1
|
Liu Y, Lin G, Chen Y, Mönch I, Makarov D, Walsh BJ, Jin D. Coding and decoding stray magnetic fields for multiplexing kinetic bioassay platform. LAB ON A CHIP 2020; 20:4561-4571. [PMID: 33146648 DOI: 10.1039/d0lc00848f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymer microspheres can be fluorescently-coded for multiplexing molecular analysis, but their usage has been limited by fluorescent quenching and bleaching and crowded spectral domain with issues of cross-talks and background interference. Each bioassay step of mixing and separation of analytes and reagents require off-line particle handling procedures. Here, we report that stray magnetic fields can code and decode a collection of hierarchically-assembled beads. By the microfluidic assembling of mesoscopic superparamagnetic cores, diverse and non-volatile stray magnetic field response can be built in the series of microscopic spheres, dumbbells, pears, chains and triangles. Remarkably, the set of stray magnetic field fingerprints are readily discerned by a compact giant magnetoresistance sensor for parallelised screening of multiple distinctive pathogenic DNAs. This opens up the magneto-multiplexing opportunity and could enable streamlined assays to incorporate magneto-mixing, washing, enrichment and separation of analytes. This strategy therefore suggests a potential point-of-care testing solution for efficient kinetic assays.
Collapse
Affiliation(s)
- Yuan Liu
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Yinghui Chen
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Ingolf Mönch
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW 2113, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia. and UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Schütt J, Illing R, Volkov O, Kosub T, Granell PN, Nhalil H, Fassbender J, Klein L, Grosz A, Makarov D. Two Orders of Magnitude Boost in the Detection Limit of Droplet-Based Micro-Magnetofluidics with Planar Hall Effect Sensors. ACS OMEGA 2020; 5:20609-20617. [PMID: 32832814 PMCID: PMC7439703 DOI: 10.1021/acsomega.0c02892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Magnetofluidics is a dynamic research field, which requires novel sensor solutions to boost the detection limit of tiny quantities of magnetized objects. Here, we present a sensing strategy relying on planar Hall effect sensors in droplet-based micro-magnetofluidics for the detection of a multiphase liquid flow, i.e., superparamagnetic aqueous droplets in an oil carrier phase. The high resolution of the sensor allows the detection of nanoliter-sized superparamagnetic droplets with a concentration of 0.58 mg/cm3, even when they are biased in a geomagnetic field only. The limit of detection can be boosted another order of magnitude, reaching 0.04 mg/cm3 (1.4 million particles in a single 100 nL droplet) when a magnetic field of 5 mT is applied to bias the droplets. With this performance, our sensing platform outperforms the state-of-the-art solutions in droplet-based micro-magnetofluidics by a factor of 100. This allows us to detect ferrofluid droplets in clinically and biologically relevant concentrations and even below without the need of externally applied magnetic fields. These results open the route for new strategies of the utilization of ferrofluids in microfluidic geometries in, e.g., bio(-chemical) or medical applications.
Collapse
Affiliation(s)
- Julian Schütt
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Rico Illing
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Oleksii Volkov
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Tobias Kosub
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Pablo Nicolás Granell
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Escuela
de Ciencia y Tecnología, UNSAM, Campus Miguelete, B1650KNA San Martín, Buenos Aires, Argentina
- Instituto
Nacional de Tecnología Industrial, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires, Argentina
| | - Hariharan Nhalil
- Department
of Physics & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jürgen Fassbender
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Lior Klein
- Department
of Physics & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Asaf Grosz
- Department
of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba 84105, Israel
| | - Denys Makarov
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
3
|
Asano S, Takahashi Y, Maki T, Muranaka Y, Cherkasov N, Mae K. Contactless mass transfer for intra-droplet extraction. Sci Rep 2020; 10:7685. [PMID: 32376922 PMCID: PMC7203142 DOI: 10.1038/s41598-020-64520-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
This study demonstrates the possibility of “contactless” mass transfer between two aqueous slugs (droplets) separated by an oil slug in Taylor flow inside milli-channels. Separation of the alternating aqueous slugs at the outlet was performed by switching a couple of solenoid valves at branched outlets according to signals obtained by an optical sensor at the branch. Transfer of bromothymol blue (BTB) from acidic to basic aqueous slugs was performed for demonstration. In some cases, aqueous slugs separated by oil, merged catching on each other due to the velocity difference. Interfacial tension which was affected by the solute concentration was responsible for the velocity difference. Position-specific mass transfer activity at the rear end of the aqueous slugs was found on the course of the experiment. A meandering channel decreased the velocity difference and enhanced mass transfer. Almost complete (93%) transfer of BTB was achieved within a short residence time of several minutes under optimized conditions. The presented system opens a way for advanced separation using minimum amounts of the oil phase and allows concentrating the solute by altering relative lengths of the sender and receiver slugs.
Collapse
Affiliation(s)
- Shusaku Asano
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga Koen, Kasuga, 816-8580, Japan. .,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga Koen, Kasuga, 816-8580, Japan.
| | - Yu Takahashi
- Department of Chemical Engineering, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Taisuke Maki
- Department of Chemical Engineering, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yosuke Muranaka
- Department of Chemical Engineering, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Nikolay Cherkasov
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Kazuhiro Mae
- Department of Chemical Engineering, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Droplet barcoding: tracking mobile micro-reactors for high-throughput biology. Curr Opin Biotechnol 2019; 60:205-212. [DOI: 10.1016/j.copbio.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
|