1
|
Amarante T, Cunha THR, Laudares C, Barboza APM, dos Santos AC, Pereira CL, Ornelas V, Neves BRA, Ferlauto AS, Lacerda RG. Carbon nanotube-cellulose ink for rapid solvent identification. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:535-543. [PMID: 37152475 PMCID: PMC10155625 DOI: 10.3762/bjnano.14.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023]
Abstract
In this work, a conductive ink based on microfibrillated cellulose (MFC) and multiwalled carbon nanotubes (MWCNTs) was used to produce transducers for rapid liquid identification. The transducers are simple resistive devices that can be easily fabricated by scalable printing techniques. We monitored the electrical response due to the interaction between a given liquid with the carbon nanotube-cellulose film over time. Using principal component analysis of the electrical response, we were able to extract robust data to differentiate between the liquids. We show that the proposed liquid sensor can classify different liquids, including organic solvents (acetone, chloroform, and different alcohols) and is also able to differentiate low concentrations of glycerin in water (10-100 ppm). We have also investigated the influence of two important properties of the liquids, namely dielectric constant and vapor pressure, on the transduction of the MFC-MWCNT sensors. These results were corroborated by independent heat flow measurements (thermogravimetric analysis). The proposed MFC-MWCNT sensor platform may help paving the way to rapid, inexpensive, and robust liquid analysis and identification.
Collapse
Affiliation(s)
- Tiago Amarante
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Thiago H R Cunha
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Claudio Laudares
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Ana P M Barboza
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto - CEP 35400-000, Brazil
| | - Ana Carolina dos Santos
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Cíntia L Pereira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Vinicius Ornelas
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - Bernardo R A Neves
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| | - André S Ferlauto
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André - CEP 09210-580, Brazil
| | - Rodrigo G Lacerda
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
- CTNano-UFMG - Centro de Nanotecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte - CEP 31270-901, Brazil
| |
Collapse
|
2
|
Arikan B, Alp FN, Ozfidan-Konakci C, Balci M, Elbasan F, Yildiztugay E, Cavusoglu H. Fe 2O 3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. CHEMOSPHERE 2022; 307:136048. [PMID: 35987272 DOI: 10.1016/j.chemosphere.2022.136048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing plastic pollution in soil and water resources raises concerns about its effects on terrestrial plants and agroecosystems. Although there are many reports about the contamination with nanoplastics on plants, the presence of magneto-assisted nanomaterials enabling the removal of their adverse impacts still remains unclear. Therefore, the purpose of the current study is to evaluate the potential of nanomaterial Fe2O3-modified graphene oxide (FGO, 50-250 mg L-1) to eliminate the adverse effects of nanoplastics in plants. Wheat plants exposed to polystyrene nanoplastics concentrations (PS, 10, 50 and 100 mg L-1) showed decreased growth, water content and loss of photosynthetic efficiency. PS toxicity negatively altered gas exchange, antenna structure and electron transport in photosystems. Although the antioxidant system was partially activated (only superoxide dismutase (SOD), NADPH oxidase (NOX) and glutathione reductase (GR)) in plants treated with PS, it failed to prevent PS-triggered oxidative damage, as showing lipid peroxidation and hydrogen peroxide (H2O2) levels. FGOs eliminated the adverse impacts of PS pollution on growth, water status, gas exchange and oxidative stress markers. In addition, FGOs preserve the biochemical reactions of photosynthesis by actively increasing chlorophyll fluorescence parameters in the stressed-wheat leaves. The activities of all enzymatic antioxidants increased, and the H2O2 and TBARS contents decreased. GSH-mediated detoxifying antioxidants such as glutathione S-transferase (GST) and glutathione peroxidase (GPX) were stimulated by FGOs against PS pollution. FGOs also triggered the enzymes and non-enzymes related to the Asada-Halliwell cycle and protected the regeneration of ascorbate (AsA) and glutathione (GSH). Our findings indicated that FGO had the potential to mitigate nanoplastic-induced damage in wheat by regulating water relations, protecting photosynthesis reactions and providing efficient ROS scavenging with high antioxidant capacity. This is the first report on removing PS-induced damage by FGO applications in wheat leaves.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Melike Balci
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
3
|
Tian Y, Wang P, Du L, Wu C. Advances in gustatory biomimetic biosensing technologies: In vitro and in vivo bioelectronic tongue. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Using machine learning and an electronic tongue for discriminating saliva samples from oral cavity cancer patients and healthy individuals. Talanta 2022; 243:123327. [DOI: 10.1016/j.talanta.2022.123327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
|
5
|
Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water is the key element that defines and individualizes our planet. Relative to body weight, water represents 70% or more for the majority of all species on Earth. Taking care of water as a whole is equivalent with taking care of the entire biodiversity or the whole of humanity itself. Water quality is becoming an increasingly important component of terrestrial life, hence intensive work is being conducted to develop sensors for detecting contaminants and assessing water quality and characteristics. Our bibliometric analysis is focused on water quality sensors based on carbon nanotubes and highlights the most important objectives and achievements of researchers in recent years. Due to important measurement characteristics such as sensitivity and selectivity, or low detection limit and linearity, up to the ability to measure water properties, including detection of heavy metal content or the presence of persistent organic compounds, carbon nanotube (CNT) sensors, taking advantage of available nanotechnologies, are becoming increasingly attractive. The conducted bibliometric analysis creates a visual, more efficient keystones mapping. CNT sensors can be integrated into an inexpensive real-time monitoring data acquisition system as an alternative for classical expensive and time-consuming offline water quality monitoring. The conducted bibliometric analysis reveals all connections and maps all the results in this water quality CNT sensors research field and gives a perspective on the approached methods on this specific type of sensor. Finally, challenges related to integration of other trends that have been used and proven to be valuable in the field of other sensor types and capable to contribute to the development (and outlook) for future new configurations that will undoubtedly emerge are presented.
Collapse
|
6
|
Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022; 7:1045-1057. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Collapse
Affiliation(s)
- Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
7
|
Nicoliche CYN, de Oliveira RAG, da Silva GS, Ferreira LF, Rodrigues IL, Faria RC, Fazzio A, Carrilho E, de Pontes LG, Schleder GR, Lima RS. Converging Multidimensional Sensor and Machine Learning Toward High-Throughput and Biorecognition Element-Free Multidetermination of Extracellular Vesicle Biomarkers. ACS Sens 2020; 5:1864-1871. [PMID: 32597643 DOI: 10.1021/acssensors.0c00599] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are a frontier class of circulating biomarkers for the diagnosis and prognosis of different diseases. These lipid structures afford various biomarkers such as the concentrations of the EVs (CV) themselves and carried proteins (CP). However, simple, high-throughput, and accurate determination of these targets remains a key challenge. Herein, we address the simultaneous monitoring of CV and CP from a single impedance spectrum without using recognizing elements by combining a multidimensional sensor and machine learning models. This multidetermination is essential for diagnostic accuracy because of the heterogeneous composition of EVs and their molecular cargoes both within the tumor itself and among patients. Pencil HB cores acting as electric double-layer capacitors were integrated into a scalable microfluidic device, whereas supervised models provided accurate predictions, even from a small number of training samples. User-friendly measurements were performed with sample-to-answer data processing on a smartphone. This new platform further showed the highest throughput when compared with the techniques described in the literature to quantify EVs biomarkers. Our results shed light on a method with the ability to determine multiple EVs biomarkers in a simple and fast way, providing a promising platform to translate biofluid-based diagnostics into clinical workflows.
Collapse
Affiliation(s)
- Caroline Y. N. Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ricardo A. G. de Oliveira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Giulia S. da Silva
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ian L. Rodrigues
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Ronaldo C. Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Letícia G. de Pontes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Gabriel R. Schleder
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
8
|
Polysaccharide Multilayer Films in Sensors for Detecting Prostate Tumor Cells Based on Hyaluronan-CD44 Interactions. Cells 2020; 9:cells9061563. [PMID: 32604896 PMCID: PMC7349506 DOI: 10.3390/cells9061563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
The increasing need for point-of-care diagnosis has sparked the development of label-free sensing platforms, some of which are based on impedance measurements with biological cells. Here, interdigitated electrodes were functionalized with layer-by-layer (LbL) films of hyaluronan (HA) and chitosan (CHI) to detect prostatic tumor cells (PC3 line). The deposition of LbL films was confirmed with atomic force microscopy and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), which featured the vibrational modes of the HA top layer capable of interacting specifically with glycoprotein CD44 receptors overexpressed in tumor cells. Though the CHI/HA LbL films cannot be considered as a traditional biosensor due to their limited selectivity, it was possible to distinguish prostate tumor cells in the range from 50 to 600 cells/µL in in vitro experiments with impedance spectroscopy. This was achieved by treating the impedance data with information visualization methods, which confirmed the distinguishing ability of the films by observing the absence of false positives in a series of control experiments. The CD44–HA interactions may, therefore, be exploited in clinical analyses and point-of-care diagnostics for cancer, particularly if computational methods are used to process the data.
Collapse
|
9
|
Mejía-Salazar JR, Rodrigues Cruz K, Materón Vásques EM, Novais de Oliveira Jr. O. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1951. [PMID: 32244343 PMCID: PMC7180826 DOI: 10.3390/s20071951] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Point-of-care (PoC) diagnostics is promising for early detection of a number of diseases, including cancer, diabetes, and cardiovascular diseases, in addition to serving for monitoring health conditions. To be efficient and cost-effective, portable PoC devices are made with microfluidic technologies, with which laboratory analysis can be made with small-volume samples. Recent years have witnessed considerable progress in this area with "epidermal electronics", including miniaturized wearable diagnosis devices. These wearable devices allow for continuous real-time transmission of biological data to the Internet for further processing and transformation into clinical knowledge. Other approaches include bluetooth and WiFi technology for data transmission from portable (non-wearable) diagnosis devices to cellphones or computers, and then to the Internet for communication with centralized healthcare structures. There are, however, considerable challenges to be faced before PoC devices become routine in the clinical practice. For instance, the implementation of this technology requires integration of detection components with other fluid regulatory elements at the microscale, where fluid-flow properties become increasingly controlled by viscous forces rather than inertial forces. Another challenge is to develop new materials for environmentally friendly, cheap, and portable microfluidic devices. In this review paper, we first revisit the progress made in the last few years and discuss trends and strategies for the fabrication of microfluidic devices. Then, we discuss the challenges in lab-on-a-chip biosensing devices, including colorimetric sensors coupled to smartphones, plasmonic sensors, and electronic tongues. The latter ones use statistical and big data analysis for proper classification. The increasing use of big data and artificial intelligence methods is then commented upon in the context of wearable and handled biosensing platforms for the Internet of things and futuristic healthcare systems.
Collapse
Affiliation(s)
| | - Kamilla Rodrigues Cruz
- National Institute of Telecommunications (Inatel), 37540-000 Santa Rita do Sapucaí, MG, Brazil;
| | - Elsa María Materón Vásques
- Sao Carlos Institute of Physics, University of Sao Paulo, P.O. Box 369, 13560-970 Sao Carlos, SP, Brazil; (E.M.M.V.); (O.N.d.O.J.)
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Osvaldo Novais de Oliveira Jr.
- Sao Carlos Institute of Physics, University of Sao Paulo, P.O. Box 369, 13560-970 Sao Carlos, SP, Brazil; (E.M.M.V.); (O.N.d.O.J.)
| |
Collapse
|
10
|
Abstract
An electronic tongue (e-tongue) is a multisensory system usually applied to complex liquid media that uses computational/statistical tools to group information generated by sensing units into recognition patterns, which allow the identification/distinction of samples. Different types of e-tongues have been previously reported, including microfluidic devices. In this context, the integration of passive mixers inside microchannels is of great interest for the study of suppression/enhancement of sensorial/chemical effects in the pharmaceutical, food, and beverage industries. In this study, we present developments using a stereolithography technique to fabricate microfluidic devices using 3D-printed molds for elastomers exploring the staggered herringbone passive mixer geometry. The fabricated devices (microchannels plus mixer) are then integrated into an e-tongue system composed of four sensing units assembled on a single printed circuit board (PCB). Gold-plated electrodes are designed as an integral part of the PCB electronic circuitry for a highly automated platform by enabling faster analysis and increasing the potential for future use in commercial applications. Following previous work, the e-tongue sensing units are built functionalizing gold electrodes with layer-by-layer (LbL) films. Our results show that the system is capable of (i) covering basic tastes below the human gustative perception and (ii) distinguishing different suppression effects coming from the mixture of both strong and weak electrolytes. This setup allows for triplicate measurements in 12 electrodes, which represents four complete sensing units, by automatically switching all electrodes without any physical interaction with the sensor. The result is a fast and reliable data acquisition system, which comprises a suitable solution for monitoring, sequential measurements, and database formation, being less susceptible to human errors.
Collapse
|
11
|
Proença CA, Freitas TA, Baldo TA, Materón EM, Shimizu FM, Ferreira GR, Soares FLF, Faria RC, Oliveira ON. Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2171-2181. [PMID: 31807403 PMCID: PMC6880837 DOI: 10.3762/bjnano.10.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/07/2019] [Indexed: 05/03/2023]
Abstract
Diagnosis of cancer using electroanalytical methods can be achieved at low cost and in rapid assays, but this may require the combination with data treatment for determining biomarkers in real samples. In this paper, we report an immunomagnetic nanoparticle-based microfluidic sensor (INμ-SPCE) for the amperometric detection of the prostate-specific antigen (PSA) biomarker, the data of which were treated with information visualization methods. The INμ-SPCE consists of eight working electrodes, reference and counter electrodes. On the working electrodes, magnetic nanoparticles with secondary antibodies with the enzyme horseradish peroxidase were immobilized for the indirect detection of PSA in a sandwich-type procedure. Under optimal conditions, the immunosensor could operate within a wide range from 12.5 to 1111 fg·L-1, with a low detection limit of 0.062 fg·L-1. Multidimensional projections combined with feature selection allowed for the distinction of cell lysates with different levels of PSA, in agreement with results from the traditional enzyme-linked immunosorbent assay. The approaches for immunoassays and data processing are generic, and therefore the strategies described here may provide a simple platform for clinical diagnosis of cancers and other types of diseases.
Collapse
Affiliation(s)
- Camila A Proença
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Tayane A Freitas
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Thaísa A Baldo
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Elsa M Materón
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Flávio M Shimizu
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Gabriella R Ferreira
- Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil
| | - Frederico L F Soares
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
- Chemistry Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Ronaldo C Faria
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| |
Collapse
|
12
|
Olenin AY, Lisichkin GV. Surface-Modified Oxide Nanoparticles: Synthesis and Application. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219070168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Nicoliche CYN, Costa GF, Gobbi AL, Shimizu FM, Lima RS. Pencil graphite core for pattern recognition applications. Chem Commun (Camb) 2019; 55:4623-4626. [DOI: 10.1039/c9cc01595g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new concept of pattern sensors based on ready-to-use sensing probes has been designed towards low-cost and rapid sample recognition applications.
Collapse
Affiliation(s)
| | - Gabriel Floriano Costa
- Laboratório Nacional de Nanotecnologia
- São Paulo 13083-970
- Brazil
- Instituto de Química
- Universidade Estadual de Campinas
| | | | | | - Renato Sousa Lima
- Laboratório Nacional de Nanotecnologia
- São Paulo 13083-970
- Brazil
- Instituto de Química
- Universidade Estadual de Campinas
| |
Collapse
|
14
|
Martucci DH, Todão FR, Shimizu FM, Fukudome TM, Schwarz SDF, Carrilho E, Gobbi AL, Oliveira ON, Lima RS. Auxiliary electrode oxidation for naked-eye electrochemical determinations in microfluidics: Towards on-the-spot applications. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
de Oliveira RAG, Nicoliche CYN, Pasqualeti AM, Shimizu FM, Ribeiro IR, Melendez ME, Carvalho AL, Gobbi AL, Faria RC, Lima RS. Low-Cost and Rapid-Production Microfluidic Electrochemical Double-Layer Capacitors for Fast and Sensitive Breast Cancer Diagnosis. Anal Chem 2018; 90:12377-12384. [DOI: 10.1021/acs.analchem.8b02605] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ricardo A. G. de Oliveira
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Caroline Y. N. Nicoliche
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Anielli M. Pasqualeti
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Flavio M. Shimizu
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Iris R. Ribeiro
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| | - Matias E. Melendez
- Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Barretos, São Paulo 14784-400, Brasil
| | - André L. Carvalho
- Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Barretos, São Paulo 14784-400, Brasil
| | - Angelo L. Gobbi
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Ronaldo C. Faria
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brasil
| | - Renato S. Lima
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| |
Collapse
|
16
|
Paulovich FV, De Oliveira MCF, Oliveira ON. A Future with Ubiquitous Sensing and Intelligent Systems. ACS Sens 2018; 3:1433-1438. [PMID: 30004210 DOI: 10.1021/acssensors.8b00276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we discuss the relevance of sensing and biosensing for the ongoing revolution in science and technology as a product of the merging of machine learning and Big Data into affordable technologies and accessible everyday products. Possible scenarios for the next decades are described with examples of intelligent systems for various areas, most of which will rely on ubiquitous sensing. The technological and societal challenges for developing the full potential of such intelligent systems are also addressed.
Collapse
Affiliation(s)
- Fernando V. Paulovich
- Faculty of Computer Science, Dalhousie University, Goldberg Computer Science Building, 6050 University Avenue, B3H 4R2, Halifax, NS, Canada
- Institute of Mathematical Sciences and Computing, University of São Paulo, CP 668, 13560-970 São Carlos, SP, Brazil
| | | | - Osvaldo N. Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|