1
|
Zeng HH, Huang RX, Jiang MQ, Liu F, Shi WG, Chen L. Dual-mode sensing strategy based on carbon dots for sensitive and selective detection of molybdate ions. Mikrochim Acta 2024; 191:187. [PMID: 38453742 DOI: 10.1007/s00604-024-06275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Two kinds of carbon dots with the maximum fluorescence peak of 492 nm (named as G-CDs) and 607 nm (named as R-CDs) were synthesized. In the presence of MoO42- ions, the fluorescence of R-CDs at 607 nm can be quenched, which can probably be assigned to their aggregation caused by MoO42-, while that of G-CDs at 492 nm remained unchanged. For the first time, a ratiometric fluorescence probe was developed for MoO42- ions detection. In the range 0.25 ~ 100 μM, the fluorescence ratio (F492/F607) of the probe was linearly related to MoO42- concentration, and the detection limit was 61.5 nM, which fully meets the minimum detection requirements of MoO42- ions in drinking water. On the other hand, when MoO42- was introduced, a significant fading phenomenon of R-CDs can be observed with the naked eye; thereby, the colorimetric method can also be proposed. Based on above, the ratiometric fluorometric/colorimetric dual-mode sensing method was established for MoO42- anion quantification. Compared with the traditional analysis methods, the results obtained by multimodal sensing can be mutually verified, which effectively improves the accuracy and reliability. The dual-mode assay proposed in this work provides an alternative scheme to meet the need of sensing target compounds in complex matrices.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China.
| | - Ren-Xiu Huang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Ming-Qiang Jiang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fang Liu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Wei-Guo Shi
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Lin Chen
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| |
Collapse
|
2
|
Mahdavi M, Emadi H, Nabavi SR. A bacterial cellulose-based LiSrVO 4:Eu 3+ nanosensor platform for smartphone sensing of levodopa and dopamine: point-of-care diagnosis of Parkinson's disease. NANOSCALE ADVANCES 2023; 5:4782-4797. [PMID: 37705795 PMCID: PMC10496915 DOI: 10.1039/d3na00297g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023]
Abstract
Among the catecholamines, dopamine (DA) is essential in regulating multiple aspects of the central nervous system. The level of dopamine in the brain correlates with neurological diseases such as Parkinson's disease (PD). However, dopamine is unable to cross the blood-brain barrier (BBB). Therefore, levodopa (LD) is used to restore normal dopamine levels in the brain by crossing the BBB. Thus, the control of LD and DA levels is critical for PD diagnosis. For this purpose, LiSr0.0985VO4:0.015Eu3+ (LSV:0.015Eu3+) nanoplates were synthesized by the microwave-assisted co-precipitation method, and have been employed as an optical sensor for the sensitive and selective detection of catecholamines. The synthesized LSV:0.015Eu3+ nanoplates emitted red fluorescence with a high quantum yield (QY) of 48%. By increasing the LD and DA concentrations, the fluorescence intensity of LSV:0.015Eu3+ nanoplates gradually decreased. Under optimal conditions, the linear dynamic ranges were 1-40 μM (R2 = 0.9972) and 2-50 μM (R2 = 0.9976), and the detection limits (LOD) were 279 nM, and 390 nM for LD and DA, respectively. Herein, an instrument-free, rapid quantification visual assay was developed using a paper-based analytical device (PAD) with LSV:0.015Eu3+ fixed on the bacterial cellulose nanopaper (LEBN) to determine LD and DA concentrations with ease of operation and low cost. A smartphone was coupled with the PAD device to quantitatively analyze the fluorescence intensity changes of LSV:0.015Eu3+ using the color recognizer application (APP). In addition, the LSV:0.015Eu3+ nanosensor showed acceptable repeatability and was used to analyze real human urine, blood serum, and tap water samples with a recovery of 96-107%.
Collapse
Affiliation(s)
- Mohammad Mahdavi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Hamid Emadi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Seyed Reza Nabavi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| |
Collapse
|
3
|
Ansari AA, Muthumareeswaran M, Lv R. Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Zeng HH, Deng J, Peng H, Yu K, Guan SP. Praseodymium selective fluorescence recognition based on GdPO 4: Tb 3+ probe via energy transfer from Tb 3+ to Pr 3+ ions. Mikrochim Acta 2021; 188:64. [PMID: 33538900 DOI: 10.1007/s00604-021-04709-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
A novel strategy is proposed based on the efficient energy transfer from Tb3+ to Pr3+ for the sensitive and selective discrimination of praseodymium ions due to the matched energy levels of 5D4 (Tb3+) and 3P0 (Pr3+). The electron of Tb3+ transfers from the ground state to the excited state under the excitation of ultraviolet light and relaxes to the 5D4 level. In the presence of Pr3+ the electron has no time to return to the ground state, thus it transfers to the 3P0 level of Pr3+ resulting in the quenching of Tb3+ luminescence. In the case of GdPO4: Tb3+ nanowire, its fluorescence intensity at 545 nm linearly decreased when Pr3+ concentration ranged from 1 × 10-7 to 1 × 10-5 M, and the detection limit was 75 nM. To further investigate the sensing mechanism, CePO4: Tb3+, YPO4: Tb3+, and YBO3: Tb3+ nanoparticles were also synthesized for Pr3+ ion detection. For all materials, similar fluorescence quenching by Pr3+ ions occurred, which confirmed the efficient energy transfer from Tb3+ to Pr3+ ions. Utilizing the matched energy levels of 5D4 (Tb3+) and 3P0 (Pr3+), for the first time, we proposed a novel strategy (taking GdPO4: Tb3+ probe as the example) based on the efficient energy transfer from Tb3+ to Pr3+ for the sensitive and selective discrimination of praseodymium ions.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China.
| | - Jie Deng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Huan Peng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Kun Yu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Shu-Ping Guan
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| |
Collapse
|
5
|
He J, Zhi H, Hu Q, Meng H, Wang J, Feng L. The SPE-assisted europium (III) based complex fluorometric assay for the highly selective and sensitive detection of manganese (II) in water. Talanta 2020; 210:120633. [PMID: 31987163 DOI: 10.1016/j.talanta.2019.120633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/01/2019] [Accepted: 12/08/2019] [Indexed: 01/27/2023]
Abstract
Detection of trace manganese (Ⅱ) ion (Mn2+) is crucial to water safety. Here, commercially available PS-DVB microspheres were sulfonated and then filled into the SPE column in order to separate Mn2+ from complex matrices. Meanwhile, europium (III) complex was prepared with a simple "one pot" method, and its fluorescence intensity was quenched gradually with the increase of Mn2+ concentration. Europium (III) complex combined with home-made SPE column was utilized for highly selective and sensitive measurement of Mn2+. The detectable concentrations of Mn2+ can be low as 0.2 μM, which was less than the drinking water guidelines. Consequently, this new method is promising to assess the content of Mn2+ rapidly and accurately in real-world water samples.
Collapse
Affiliation(s)
- Jiaqi He
- School of Biological Engineering, Dalian Polytechnic University, No.1 Qinggong Road, Ganjingzi District, Dalian, Liaoning, 116034, PR China; Department of Instrumentation and Analytical Chemistry, Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China
| | - Hui Zhi
- Department of Instrumentation and Analytical Chemistry, Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qi Hu
- Department of Instrumentation and Analytical Chemistry, Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hu Meng
- Department of Instrumentation and Analytical Chemistry, Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, No.1 Qinggong Road, Ganjingzi District, Dalian, Liaoning, 116034, PR China; School of Chemical Engineering and Energy Technology, Institute of Science and Technology Innovation, Dongguan University of Technology, No. 1 Daxue Road, Songshan Lake, Dongguan, Guangdong, 523808, PR China.
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
6
|
Xiao W, Liu F, Yan GP, Shi WG, Peng KL, Yang XQ, Li XJ, Yu HC, Shi ZY, Zeng HH. Yttrium vanadates based ratiometric fluorescence probe for alkaline phosphatase activity sensing. Colloids Surf B Biointerfaces 2020; 185:110618. [DOI: 10.1016/j.colsurfb.2019.110618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
|
7
|
Xiao QQ, Liu D, Wei YL, Cui GH. Two new ternary Mn(II) coordination polymers by regulation of aromatic carboxylate ligands: Synthesis, structures, photocatalytic and selective ion-sensing properties. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|