1
|
Miyagawa A, Kono H, Nagatomo S, Nakatani K. Orientation of Antibody Modified and Reacted on Carboxy-Functionalized Polystyrene Particle Revealed by Zeta Potential Measurement. Anal Chem 2024; 96:14274-14282. [PMID: 39159408 DOI: 10.1021/acs.analchem.4c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The comprehensive understanding of the orientation of antibodies on a solid surface is crucial for affinity-based sensing mechanisms. In this study, we demonstrated that the orientation of primary antibodies modified on carboxy-functionalized polystyrene (PS) particles can be analyzed using zeta potential behavior at different pH based on the combined Gouy-Chapman-Stern model and the acid dissociation of carboxy groups and antibodies. We observed that at low surface concentrations of the primary antibody, a side-on orientation was predominant. However, at higher concentrations (approximately 30000 antibodies per PS particle), the orientation shifted to an end-on type due to steric hindrance. Furthermore, the reaction mechanism of the secondary antibody exhibited pH-dependent behavior. At pH > 7, the zeta potential changes were attributed to the antibody-antibody reaction, whereas at pH < 7, adsorption of secondary antibody onto the PS particle was observed, leading to a change in the orientation of the primary antibody modified on the PS particle to an end-on type. The change in zeta potential due to secondary antibody binding indicated a detection limit of 37000 antibodies per PS particle. As a result, we revealed that the analysis of zeta potential behavior enables the evaluation of antibody orientation and the detection of zeptomole order antibodies. This study represents the first demonstration of this capability. We anticipate that the present concept and results will broaden the quantitative application of zeta potential measurements and have significant implications for research areas, including physical chemistry and analytical chemistry.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Haruka Kono
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Miyagawa A, Ito C, Ueda Y, Nagatomo S, Nakatani K. DNA sensing based on aggregation of Janus particles using dynamic light scattering. Anal Chim Acta 2024; 1318:342933. [PMID: 39067936 DOI: 10.1016/j.aca.2024.342933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The aggregation of isotropic particles through interparticle reactions poses a challenge in control due to the ability of all surfaces to bind to each other, rendering the quantitative detection of such interparticle reactions based on particle size difficult. Here, we proposed a novel detection scheme for DNA utilizing an assembly of Janus particles (JPs) employing dynamic light scattering (DLS). DNA molecules are tethered on one hemisphere of the JP, while the other hemisphere retains its hydrophobic properties. RESULTS Aggregation of JPs was induced by the sandwich hybridization of target DNA between them. The assembly of JPs was effectively monitored by the changes in hydrodynamic diameter detected by DLS, revealing that aggregation peaks at 2-3 particles and further reaction was hindered due to the inability of one hemisphere of the JP to interact with another JP. The target DNA demonstrated detectability at concentrations as low as several tens of pM to several nM using a digital sensing method. The two types of target DNA, such as simple (14 base pairs) and HIV-2 specific sequences (20 base pairs) were detectable at nM and pM levels, respectively. Moreover, we substantiated the robustness of our detection scheme through stoichiometric calculations based on an equilibrium model. The present detection mechanism was well explained based on the binding affinity of DNA hybridization. SIGNIFICANCE This detection method harnesses the anisotropic nature of JPs and represents the first detection approach based on aggregation. By altering the modification molecules on JPs to match target molecules, such as proteins and organic compounds, a wide range of versatile molecules can be detected using this scheme with high sensitivity. This underscores the broad applicability of the present method.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Chisa Ito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuyuki Ueda
- Institute of Quantum Life Science, National Institute for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
3
|
Doan-Nguyen TP, Crespy D. Advanced density-based methods for the characterization of materials, binding events, and kinetics. Chem Soc Rev 2022; 51:8612-8651. [PMID: 36172819 DOI: 10.1039/d1cs00232e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the densities of chemicals and materials bring valuable insights into the fundamental understanding of matter and processes. Recently, advanced density-based methods have been developed with wide measurement ranges (i.e. 0-23 g cm-3), high resolutions (i.e. 10-6 g cm-3), compatibility with different types of samples and the requirement of extremely low volumes of sample (as low as a single cell). Certain methods, such as magnetic levitation, are inexpensive, portable and user-friendly. Advanced density-based methods are, therefore, beneficially used to obtain absolute density values, composition of mixtures, characteristics of binding events, and kinetics of chemical and biological processes. Herein, the principles and applications of magnetic levitation, acoustic levitation, electrodynamic balance, aqueous multiphase systems, and suspended microchannel resonators for materials science are discussed.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
4
|
Zeptomole detection of DNA based on microparticle dissociation from a glass plate in a combined acoustic-gravitational field. Talanta 2022; 238:123042. [PMID: 34801899 DOI: 10.1016/j.talanta.2021.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
In this study, we propose a novel detection principle based on the dissociation of microparticles immobilized on a glass plate through weak hybridization involving 4-6 base pairs (bps) in a combined acoustic-gravitational field. Particle dissociation from the glass plate occurs when the resultant of the acoustic radiation force (Fac) and the sedimentation force (Fsed) exerted on the particle exceeds the binding force owing to the weak hybridization (Fbind). Because Fac and Fsed can be controlled by the microparticle density, and Fac is a function of the applied voltage to the transducer (V), an increase in V induces particle dissociation. The binding of gold nanoparticles (AuNPs) onto silica microparticles (SPs) resulting from the strong hybridization of 20 bps induces an increase in the density of SPs, leading to an increase in Fac and Fsed; consequently, the voltage V required for dissociation becomes lower than that required without AuNP binding. We demonstrate that the dependence of the binding number of AuNPs per SP on V follows the theoretical prediction. The binding of 7500 AuNPs per SP can be detected as a 10 V change in V. The present approach allows the detection of 2000 DNA molecules involved in the strong hybridization between AuNPs and SP.
Collapse
|
5
|
Mukhtar M, Sargazi S, Barani M, Madry H, Rahdar A, Cucchiarini M. Application of Nanotechnology for Sensitive Detection of Low-Abundance Single-Nucleotide Variations in Genomic DNA: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1384. [PMID: 34073904 PMCID: PMC8225127 DOI: 10.3390/nano11061384] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) are the simplest and most common type of DNA variations in the human genome. This class of attractive genetic markers, along with point mutations, have been associated with the risk of developing a wide range of diseases, including cancer, cardiovascular diseases, autoimmune diseases, and neurodegenerative diseases. Several existing methods to detect SNPs and mutations in body fluids have faced limitations. Therefore, there is a need to focus on developing noninvasive future polymerase chain reaction (PCR)-free tools to detect low-abundant SNPs in such specimens. The detection of small concentrations of SNPs in the presence of a large background of wild-type genes is the biggest hurdle. Hence, the screening and detection of SNPs need efficient and straightforward strategies. Suitable amplification methods are being explored to avoid high-throughput settings and laborious efforts. Therefore, currently, DNA sensing methods are being explored for the ultrasensitive detection of SNPs based on the concept of nanotechnology. Owing to their small size and improved surface area, nanomaterials hold the extensive capacity to be used as biosensors in the genotyping and highly sensitive recognition of single-base mismatch in the presence of incomparable wild-type DNA fragments. Different nanomaterials have been combined with imaging and sensing techniques and amplification methods to facilitate the less time-consuming and easy detection of SNPs in different diseases. This review aims to highlight some of the most recent findings on the aspects of nanotechnology-based SNP sensing methods used for the specific and ultrasensitive detection of low-concentration SNPs and rare mutations.
Collapse
Affiliation(s)
- Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
6
|
Miyagawa A, Okada T. Particle Manipulation with External Field; From Recent Advancement to Perspectives. ANAL SCI 2021; 37:69-78. [PMID: 32921654 DOI: 10.2116/analsci.20sar03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Physical forces, such as dielectric, magnetic, electric, optical, and acoustic force, provide useful principles for the manipulation of particles, which are impossible or difficult with other approaches. Microparticles, including polymer particles, liquid droplets, and biological cells, can be trapped at a particular position and are also transported to arbitrary locations in an appropriate external physical field. Since the force can be externally controlled by the field strength, we can evaluate physicochemical properties of particles from the shift of the particle location. Most of the manipulation studies are conducted for particles of sub-micrometer or larger dimensions, because the force exerted on nanomaterials or molecules is so weak that their direct manipulation is generally difficult. However, the behavior, interactions, and reactions of such small substances can be indirectly evaluated by observing microparticles, on which the targets are tethered, in a physical field. We review the recent advancements in the manipulation of particles using a physical force and discuss its potentials, advantages, and limitations from fundamental and practical perspectives.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan.
| |
Collapse
|
7
|
Miyagawa A, Okada Y, Okada T. Aptamer-Based Sensing of Small Organic Molecules by Measuring Levitation Coordinate of Single Microsphere in Combined Acoustic-Gravitational Field. ACS OMEGA 2020; 5:3542-3549. [PMID: 32118169 PMCID: PMC7045491 DOI: 10.1021/acsomega.9b03860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
We present aptamer-based sensing using a coupled acoustic-gravitational (CAG) field, which transduces a change in the density of a microparticle (MP) to a change in the levitation coordinate. A large density of the MP is initially induced by the binding of gold nanoparticles (AuNPs) on the MP through sandwich hybridization with aptamer DNA molecules. Targets added to the system interact with the aptamer DNA molecules to form complexes, and the duplex between the aptamer and the probe DNA molecules is dissociated. This leads to the release of AuNPs from the MP and a decrease in its density. As the target concentration increases, the levitation coordinate of the MP increases. From the levitation coordinate shift, we can determine the target concentration. The detection limits for adenosine triphosphate, dopamine, and ampicillin as test targets are 9.8 nM, 17 nM, and 160 pM, respectively. The dissociation constants for the aptamer-target complexes are quantitatively determined from the dependence of the levitation coordinate on the target concentration. This scheme is a useful analytical tool not only for the trace analyses of targets but also for the evaluation of aptamer-target interactions.
Collapse
|
8
|
Miyagawa A, Harada M, Okada T. Multiple MicroRNA Quantification Based on Acoustic Levitation of Single Microspheres after One-Pot Sandwich Interparticle Hybridizations. Anal Chem 2018; 90:13729-13735. [DOI: 10.1021/acs.analchem.8b04143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|