1
|
Du E, Xu H, Ponkratova L. Electro-deformation spectroscopy: A unified method for simultaneous electrical and mechanical characterization of single cells. Acta Biomater 2025; 192:119-127. [PMID: 39644941 DOI: 10.1016/j.actbio.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The intrinsic electrical and mechanical properties of cells are not only valuable biophysical markers reflective of physiological conditions but also play important roles in the development and progression of human diseases. Existing single-cell techniques are restricted to assessing either mechanical or electrical properties. We introduce the development of electro-deformation spectroscopy (EDS), namely the frequency-dependent electro-deformation, as a new method for simultaneous electrical and mechanical characterization of individual cells in suspension. To facilitate the practical use of this technology, we developed a testing procedure that evaluates red blood cells (RBCs) directly from whole blood in a simple microfluidic system, employing an electric field magnitude of 34 kV/m over a frequency range of 15 MHz to 100 kHz. The EDS measurement is performed under stationary conditions without special cell stabilization, at a moderate throughput of 50-100 cells per minute. We develop an experimental-computational framework to decouple cell electromechanics by optimizing the most suitable parameters of the relative permittivity of cell membrane, cytoplasm electrical conductivity, and membrane shear modulus. This technique, tested on RBCs from 4 healthy human samples, revealed membrane relative permittivity of 3.6 - 5.8, membrane shear modulus of 2.2 - 2.8 µN/m, and cytoplasm conductivity of 0.47 - 0.81 S/m. EDS analysis identifies the marked intrasample heterogeneity and individual variability in both cellular electrical and mechanical properties. The EDS framework can be readily used to test RBCs across different species, pathological states, and other cell types of similar structures as RBCs. STATEMENT OF SIGNIFICANCE: This work introduces electro-deformation spectroscopy (EDS) as a unified method for simultaneous electrical and mechanical characterization of single cells in suspension. This is the first-of-its-kind technology for such purposes. EDS can be performed in a simple microfluidic system with minimal sample preparation, making it a convenient and powerful tool for label-free, non-invasive single-cell analysis. We validate the applicability of EDS by measuring the intrasample heterogeneity and individual variability based on the electromechanical parameters of interest for human red blood cells. Single-cell EDS has the potential to enable rapid and reliable detection of cellular changes by diseases or drug treatments and provide insights into the fundamental bioelectromechanical mechanisms of cellular adaptation and dysfunction. This work advances the field of single-cell analysis and contributes to the development of biomaterials and biotechnologies based on cellular electromechanics.
Collapse
Affiliation(s)
- E Du
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States; Department of Biomedical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States.
| | - Hongyuan Xu
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Liliana Ponkratova
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
2
|
Moghtaderi H, Mohahammadi S, Sadeghian G, Choudhury M, Al-Harrasi A, Rahman SM. Electrical impedance sensing in stem cell research: Insights, applications, and future directions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 195:1-14. [PMID: 39557164 DOI: 10.1016/j.pbiomolbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The exceptional differentiation abilities of stem cells make them ideal candidates for cell replacement therapies. Considering their great potential, researchers should understand how stem cells interact with other cell types. The production of high-quality differentiated cells is crucial for favorable treatment and makes them an ideal choice for clinical applications. Label-free stem cell monitoring approaches are anticipated to be more effective in this context, as they ensure quality of differentiation while preserving the therapeutic potential. Electric cell-substrate impedance sensing (ECIS) is a nonintrusive technique that enables cell quantification through continuous monitoring of adherent cell behavior using electronic transcellular impedance measurements. This technique also facilitates the study of cell growth, motility, differentiation, drug effects, and cell barrier functions. Therefore, numerous studies have identified ECIS as an effective method for monitoring stem cell quality and differentiation. In this review, we discuss the current understanding of ECIS's achievements in examining cell behaviors and the potential applications of ECIS arrays in preclinical stem cell research. Moreover, we highlight our present knowledge concerning ECIS's contributions in examining cell behaviors and speculate about the future uses of ECIS arrays in preclinical stem cell research. This review also aims to stimulate research on electrochemical biosensors for future applications in regenerative medicine.
Collapse
Affiliation(s)
- Hassan Moghtaderi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Saeed Mohahammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Golfam Sadeghian
- Advanced Micro and Nano Device Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439957131, Iran
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas A & M University, College Station, TX, 77843, USA
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman.
| |
Collapse
|
3
|
Laguillaumie MO, Titah S, Guillemette A, Neve B, Leprêtre F, Ségard P, Shaik FA, Collard D, Gerbedoen JC, Fléchon L, Hasan Bou Issa L, Vincent A, Figeac M, Sebda S, Villenet C, Kluza J, Laine W, Fournier I, Gimeno JP, Wisztorski M, Manier S, Tarhan MC, Quesnel B, Idziorek T, Touil Y. Deciphering genetic and nongenetic factors underlying tumour dormancy: insights from multiomics analysis of two syngeneic MRD models of melanoma and leukemia. Biol Res 2024; 57:59. [PMID: 39223638 PMCID: PMC11370043 DOI: 10.1186/s40659-024-00540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets. RESULTS We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies. CONCLUSIONS Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.
Collapse
Affiliation(s)
- Marie-Océane Laguillaumie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
- Inserm, U1003-PHYCEL-Physiologie Cellulaire, Univ. Lille, 59000, Lille, France
| | - Sofia Titah
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
- Inserm, U1003-PHYCEL-Physiologie Cellulaire, Univ. Lille, 59000, Lille, France
| | - Aurélie Guillemette
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Bernadette Neve
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Frederic Leprêtre
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France
| | - Pascaline Ségard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Faruk Azam Shaik
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
- CNRS, IIS, COL, Univ. Lille SMMiL-E Project, Lille, France
| | - Dominique Collard
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
- CNRS, IIS, COL, Univ. Lille SMMiL-E Project, Lille, France
| | - Jean-Claude Gerbedoen
- LIMMS/CNRS-IIS IRL2820, The University of Tokyo, Tokyo, Japan
- CNRS, IIS, COL, Univ. Lille SMMiL-E Project, Lille, France
- Department of Health and Environment, Junia HEI-ISEN-ISA, Lille, France
| | - Léa Fléchon
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Lama Hasan Bou Issa
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Audrey Vincent
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Martin Figeac
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France
| | - Shéhérazade Sebda
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France
| | - Céline Villenet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Univ. Lille, 59000, Lille, France
| | - Jérôme Kluza
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - William Laine
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Isabelle Fournier
- Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Univ. Lille, 59000, Lille, France
| | - Jean-Pascal Gimeno
- Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Univ. Lille, 59000, Lille, France
| | - Maxence Wisztorski
- Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Univ. Lille, 59000, Lille, France
| | - Salomon Manier
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Mehmet Cagatay Tarhan
- CNRS, IIS, COL, Univ. Lille SMMiL-E Project, Lille, France
- Department of Health and Environment, Junia HEI-ISEN-ISA, Lille, France
- CNRS, Centrale Lille, Polytechnique Hauts-de-France, Junia, UMR 8520-IEMN, Univ. Lille, Villeneuve d'Ascq, France
| | - Bruno Quesnel
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Thierry Idziorek
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France
| | - Yasmine Touil
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, 59000, Lille, France.
| |
Collapse
|
4
|
Niraula D, El Naqa I, Tuszynski JA, Gatenby RA. Modeling non-genetic information dynamics in cells using reservoir computing. iScience 2024; 27:109614. [PMID: 38632985 PMCID: PMC11022048 DOI: 10.1016/j.isci.2024.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Virtually all cells use energy-driven, ion-specific membrane pumps to maintain large transmembrane gradients of Na+, K+, Cl-, Mg++, and Ca++, but the corresponding evolutionary benefit remains unclear. We propose that these gradients enable a dynamic and versatile biological system that acquires, analyzes, and responds to environmental information. We hypothesize that environmental signals are transmitted into the cell by ion fluxes along pre-existing gradients through gated ion-specific membrane channels. The consequent changes in cytoplasmic ion concentration can generate a local response or orchestrate global/regional cellular dynamics through wire-like ion fluxes along pre-existing and self-assembling cytoskeleton to engage the endoplasmic reticulum, mitochondria, and nucleus.
Collapse
Affiliation(s)
- Dipesh Niraula
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| | - Jack Adam Tuszynski
- Departments of Physics and Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin 10129, Italy
| | - Robert A. Gatenby
- Departments of Radiology and Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
5
|
Diban N, Mantecón-Oria M, Berciano MT, Puente-Bedia A, Rivero MJ, Urtiaga A, Lafarga M, Tapia O. Non-homogeneous dispersion of graphene in polyacrylonitrile substrates induces a migrastatic response and epithelial-like differentiation in MCF7 breast cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-021-00107-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
Recent advances from studies of graphene and graphene-based derivatives have highlighted the great potential of these nanomaterials as migrastatic agents with the ability to modulate tumor microenvironments. Nevertheless, the administration of graphene nanomaterials in suspensions in vivo is controversial. As an alternative approach, herein, we report the immobilization of high concentrations of graphene nanoplatelets in polyacrylonitrile film substrates (named PAN/G10) and evaluate their potential use as migrastatic agents on cancer cells.
Results
Breast cancer MCF7 cells cultured on PAN/G10 substrates presented features resembling mesenchymal-to-epithelial transition, e.g., (i) inhibition of migratory activity; (ii) activation of the expression of E-cadherin, cytokeratin 18, ZO-1 and EpCAM, four key molecular markers of epithelial differentiation; (iii) formation of adherens junctions with clustering and adhesion of cancer cells in aggregates or islets, and (iv) reorganization of the actin cytoskeleton resulting in a polygonal cell shape. Remarkably, assessment with Raman spectroscopy revealed that the above-mentioned events were produced when MCF7 cells were preferentially located on top of graphene-rich regions of the PAN/G10 substrates.
Conclusions
The present data demonstrate the capacity of these composite substrates to induce an epithelial-like differentiation in MCF7 breast cancer cells, resulting in a migrastatic effect without any chemical agent-mediated signaling. Future works will aim to thoroughly evaluate the mechanisms of how PAN/G10 substrates trigger these responses in cancer cells and their potential use as antimetastatics for the treatment of solid cancers.
Graphical Abstract
Collapse
|
6
|
|
7
|
Correlation between electrical characteristics and biomarkers in breast cancer cells. Sci Rep 2021; 11:14294. [PMID: 34253828 PMCID: PMC8275571 DOI: 10.1038/s41598-021-93793-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/28/2021] [Indexed: 11/09/2022] Open
Abstract
Both electrical properties and biomarkers of biological tissues can be used to distinguish between normal and diseased tissues, and the correlations between them are critical for clinical applications of conductivity (σ) and permittivity (ε); however, these correlations remain unknown. This study aimed to investigate potential correlations between electrical characteristics and biomarkers of breast cancer cells (BCC). Changes in σ and ε of different components in suspensions of normal cells and BCC were analyzed in the range of 200 kHz-5 MHz. Pearson's correlation coefficient heatmap was used to investigate the correlation between σ and ε of the cell suspensions at different stages and biomarkers of cell growth and microenvironment. σ and ε of the cell suspensions closely resembled those of tissues. Further, the correlations between Na+/H+ exchanger 1 and ε and σ of cell suspensions were extremely significant among all biomarkers (pε < 0.001; pσ < 0.001). There were significant positive correlations between cell proliferation biomarkers and ε and σ of cell suspensions (pε/σ < 0.05). The microenvironment may be crucial in the testing of cellular electrical properties. ε and σ are potential parameters to characterize the development of breast cancer.
Collapse
|
8
|
Yazdanparast S, Benvidi A, Abbasi S, Sabbagh SK. Monitoring the mechanism of anti-cancer agents to inhibit colorectal cancer cell proliferation: Enzymatic biosensing of glucose combined with molecular docking. Enzyme Microb Technol 2021; 148:109804. [PMID: 34116755 DOI: 10.1016/j.enzmictec.2021.109804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 10/24/2022]
Abstract
Glucose, a major energy source in cellular metabolism, has a significant role in cell growth. The increase in glucose uptake is a distinguishing hallmark in cancer cells. A key step in glucose utilization is the transport of glucose to the cancer cells for supplying their additional energy. The glucose transporter (or GLUT) family is a membrane protein which facilitates the uptake of glucose in most cancer cell types. Given the increased glucose level in cancer cells and the regulatory role of GLUTs in glucose uptake, it is required to combine both experimental and theoretical studies to develop new methods to monitor cell proliferation. Herein, for the first time, a new strategy was proposed to evaluate the cell proliferation of HT-29 based on glucose consumption in the presence of resveratrol (RSV) as an anticancer agent. A hybrid nanocomposite of carbon nanofibers and nitrogen-doped graphene quantum dots was used to design an enzymatic sensor for the selective and sensitive determination of glucose in cancer cells. The results obtained from the voltammetric technique were compared with the conventional colorimetric assay. A good correlation was observed between the proliferation rate and glucose utilization by cancer cells. As it was observed, RSV induces a decrease in glucose consumption, indicating lower glucose uptake efficiency for HT-29 cells. Molecular docking studies reveal that RSV can block the interaction of glucose with the GLUT family. This is one of the possible mechanisms for the decrease of glucose level followed by the reduction of cell proliferation in the presence of RSV. Compared with traditional methods, in vitro electrochemical techniques benefit from simple, nontoxic, sensitive and low-cost detection assays and hence serve as a novel tool to pursue the growth inhibition of cancer cell in response to anti-cancer agents.
Collapse
Affiliation(s)
- Samira Yazdanparast
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Saleheh Abbasi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | | |
Collapse
|
9
|
Attari F, Hazim H, Zandi A, Mazarei Z, Rafati H. Circumventing paclitaxel resistance in breast cancer cells using a nanoemulsion system and determining its efficacy via an impedance biosensor. Analyst 2021; 146:3225-3233. [PMID: 33999068 DOI: 10.1039/d0an02013c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the best strategies to circumvent drug resistance is the employment of nanocarriers. For the current study, we have employed a nanoemulsion formulation of paclitaxel (PTX) to bypass drug resistance in the MDA-MB-231 cell line and impedance sensing biosensors to determine the exact time that PTX-NE induced apoptosis. Our MTT results demonstrated that PTX treatment could not reduce MDA-MB-231 cell viability to IC50 even after three days. However, the employment of the reagent TPGS (inhibitor of drug resistance) combined with paclitaxel could partially obviate PTX resistance. Next, the nanoemulsion form of PTX (PTX-NE) was fabricated employing the essential oil of the Satureja khuzestanica plant and was characterized using DLS and TEM methods. Our data showed that after 72 hours, PTX-NE at 250 nM concentration could induce a 50% reduction in cell viability. Moreover, annexin/PI and cell cycle analysis confirmed the apoptotic effect of PTX-NE on cancer cells. Lastly, we measured the impedance of MDA-MB-231 cells treated with the free and nanoemulsion forms of PTX. A significant decrease in the mean impedance of PTX-NE treated cells could be observed after 40 hours. To conclude, we have demonstrated here that PTX-NE could circumvent resistance and induce apoptosis in PTX-resistant breast cancer cells, which could be inferred from their impedance measurement.
Collapse
Affiliation(s)
- Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
10
|
Ghaderinia M, Khayamian MA, Abadijoo H, Shalileh S, Faramarzpour M, Zandi A, Simaee H, Abbasvandi F, Esmailinejad MR, Rafizadeh-Tafti S, Jahangiri M, Kordehlachin Y, Ghaffari H, Ansari E, Dabbagh N, Akbari ME, Hoseinpour P, Abdolahad M. Capture-free deactivation of CTCs in the bloodstream; a metastasis suppression method by electrostatic stimulation of the peripheral blood. Biosens Bioelectron 2021; 183:113194. [PMID: 33813209 DOI: 10.1016/j.bios.2021.113194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
While limited investigations have been reported on CTC elimination and its profits, recently, some new works were reported on detection followed by the destruction of CTCs. Limitations and complications of CTC capturing procedures have highly reduced the chance of selective destruction of CTCs in the bloodstream in the therapeutic guidelines of the patients. Here, we selectively deactivated the invasive function of CTCs during their circulation in the bloodstream by exposing the whole blood to pure positive electrostatic charge stimulation (PPECS). Our treatment suppressed pulmonary metastasis and extended the survival of the mice had been intravenously injected by electrostatically deactivated 4T1 breast cancer CTCs. Moreover, the number of cancerous lung nodules was drastically reduced in the mice injected by treated CTCs in comparison with the non-treated cohort. Evaluating the side effect of the PPECS on the blood components revealed no major effect on the functional properties of the white blood cells, and just a negligible fraction (∼10%) was damaged during this process. This approach does not need any capturing or targeting of CTCs from the blood as it is focused on perturbing the electrical function of negatively-charged tumor cells after being exposed to positive electrostatic charges. Taken together, continuous in-vivo deactivation of CTCs by PPECS with no requirement to complicated capturing protocols may improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mohammadreza Ghaderinia
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Hamed Abadijoo
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Shahriar Shalileh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Mahsa Faramarzpour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Ashkan Zandi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Hossein Simaee
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515; Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX 15179/64311, Tehran, Iran
| | - Fereshteh Abbasvandi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX 15179/64311, Tehran, Iran
| | - Mohammad Reza Esmailinejad
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran, P.O. Box 14155/6453
| | - Saeed Rafizadeh-Tafti
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Mojtaba Jahangiri
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Yasin Kordehlachin
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Hadi Ghaffari
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Ehsan Ansari
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515
| | - Najmeh Dabbagh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, P.O. BOX 15179/64311, Tehran, Iran
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, P.O. BOX 15179/64311, Tehran, Iran
| | | | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, P.O. Box 14395/515; Cancer Institute, Imam-Khomeini Hospital, Tehran University of Medical Sciences, P.O. BOX 13145-158, Tehran, Iran; UT&TUMS Cancer Electrotechnique Research Center, YAS Hospital, P.O. Box 1598718311, Tehran, Iran.
| |
Collapse
|
11
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
12
|
Mozneb M, Mirtaheri E, Sanabria AO, Li CZ. Bioelectronic properties of DNA, protein, cells and their applications for diagnostic medical devices. Biosens Bioelectron 2020; 167:112441. [PMID: 32763825 DOI: 10.1016/j.bios.2020.112441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023]
Abstract
From a couple of centuries ago, understanding physical properties of biological material, their interference with their natural host and their potential manipulation for employment as a conductor in medical devices, has gathered substantial interest in the field of bioelectronics. With the fast-emerging technologies for fabrication of diagnostic modalities, wearable biosensors and implantable devices, which electrical components are of essential importance, a need for developing novel conductors within such devices has evolved over the past decades. As the possibility of electron transport within small biological molecules, such as DNA and proteins, as well as larger elements such as cells was established, several discoveries of the modern charge characterization technologies were evolved. Development of Electrochemical Scanning Tunneling Microscopy and Nuclear Magnetic Resonance among many other techniques were of vital importance, following the discoveries made in sub-micron scales of biological material. This review covers the most recent understandings of electronic properties within different scale of biological material starting from nanometer range to millimeter-sized organs. We also discuss the state-of-the-art technology that's been made taking advantage of electronic properties of biological material for addressing diseases like Parkinson's Disease and Epilepsy.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Elnaz Mirtaheri
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Arianna Ortega Sanabria
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Chen-Zhong Li
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| |
Collapse
|
13
|
Chiolerio A, Draper TC, Mayne R, Adamatzky A. On resistance switching and oscillations in tubulin microtubule droplets. J Colloid Interface Sci 2020; 560:589-595. [DOI: 10.1016/j.jcis.2019.10.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023]
|