1
|
Castrovilli MC, Gentili P, Vitali A, Cerra S, Palmeri F, Fratoddi I, Polentarutti M, Bais G, Gullo L, Cartoni A. Electrospray deposition of starch-containing laccase: A green technique for low-cost and eco-friendly biosensors. Biosens Bioelectron 2025; 267:116758. [PMID: 39316871 DOI: 10.1016/j.bios.2024.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Recently a laccase-based biosensors with unprecedented reuse and storage capabilities in the detection of catechol compound has been manufactured using ambient Electrospray Deposition (ESD) technique. These biosensors showed to be reused up to 63 measurements on the same electrode just prepared at room temperature and pressure. In this new work the reasons behind such a high-performance functioning have been investigated by analysing the commercial sample of laccase with different chemical physics methods: Electrophoresis, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence and Nuclear Magnetic Resonance Spectroscopy. The analyses reveal the presence of the starch in the sample and its essential role as stabilizing agent. Indeed, comparing the performance of starch/laccase-based biosensors with starch-free/laccase-based biosensors, both produced via ESD, showed that the starch-free biosensors lost about 40% of their performance after just the first wash. This suggests that the presence of starch in the laccase sample is a key factor in providing the high wash and storage resistance, which are essential for the fabrication of such devices.
Collapse
Affiliation(s)
- Mattea Carmen Castrovilli
- Istituto di Struttura Della Materia-CNR, (ISM-CNR), Area Della Ricerca di Roma 1, 00015, Monterotondo, Italy.
| | - Patrizia Gentili
- Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche-CNR (SCITEC), L.go F. Vito, 1, 00168, Roma, Italy
| | - Sara Cerra
- Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Federica Palmeri
- Istituto di Struttura Della Materia-CNR, (ISM-CNR), Area Della Ricerca di Roma 1, 00015, Monterotondo, Italy; Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Ilaria Fratoddi
- Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Maurizio Polentarutti
- Elettra - Sincrotrone Trieste, S.C.p.A. di Interesse Nazionale, S. S. 14 - Km 163, 5 in AREA Science Park, 34149, Basovizza, Trieste, Italy
| | - Giorgio Bais
- Elettra - Sincrotrone Trieste, S.C.p.A. di Interesse Nazionale, S. S. 14 - Km 163, 5 in AREA Science Park, 34149, Basovizza, Trieste, Italy
| | - Ludovica Gullo
- Istituto di Struttura Della Materia-CNR, (ISM-CNR), Area Della Ricerca di Roma 1, 00015, Monterotondo, Italy; Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Antonella Cartoni
- Istituto di Struttura Della Materia-CNR, (ISM-CNR), Area Della Ricerca di Roma 1, 00015, Monterotondo, Italy; Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185, Roma, Italy.
| |
Collapse
|
2
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink HG. ZnO-Polyaniline Nanocomposite Functionalised with Laccase Enzymes for Electrochemical Detection of Cetyltrimethylammonuium Bromide (CTAB). J Xenobiot 2024; 14:1988-2002. [PMID: 39728414 DOI: 10.3390/jox14040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring. In our study, ZnO-PANI nanocomposites were electrodeposited on a glassy carbon electrode (GCE), followed by the immobilization of laccase enzymes and the electrodeposition of polypyrrole (PPy), to form a biosensor that was used for the detection of CTAB. A UV-Vis analysis showed bands corresponding to the π-π* transition of benzenoid and quinoid rings, π-polaron band transition and n-π*polaronic transitions associated with the extended coil chain conformation of PANI, and the presence and interaction of ZnO with PANI and type 3 copper in the laccase enzymes. The FTIR analysis exhibited peaks corresponding to N-H and C-N stretches and bends for amine, C=C stretches for conjugated alkenes, and a C-H bend for aromatic compounds. A high-resolution scanning electron microscopy (HRSEM) analysis proved that PANI and ZnO-PANI were deposited as fibres with hairy topography resulting from covalent bonding with the laccase enzymes. The modified electrode (PPy-6/GCE) was used as a platform for the detection of CTAB with three linear ranges of 0.5-100 µM, 200-500 µM, and 700-1900 µM. The sensor displayed a high sensitivity of 0.935 μA μM-1 cm-2, a detection limit of 0.0116 µM, and acceptable recoveries of 95.02% and 87.84% for tap water and wastewater, respectively.
Collapse
Affiliation(s)
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Nils Hendrik Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
- Unit for Energy and Technology Systems-Nuclear Engineering, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa
| | - Hendrik Gideon Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
3
|
Bertolini S, Delcorte A. Molecular Dynamics Simulations of Soft and Reactive Landing of Proteins Desorbed by Argon Cluster Bombardment. J Phys Chem B 2024; 128:6716-6729. [PMID: 38975731 DOI: 10.1021/acs.jpcb.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Reactive molecular dynamics (MD) simulations were conducted to investigate the soft and reactive landing of hyperthermal velocity proteins transferred to a vacuum using large argon clusters. Experimentally, the interaction of argon cluster ion beams (Ar1000-5000+) with a target biofilm was previously used in such a manner to transfer lysozymes onto a collector with the retention of their bioactivity, paving the way to a new solvent-free method for complex biosurface nanofabrication. However, the experiments did not give access to a microscopic view of the interactions needed for their full understanding, which can be provided by the MD model. Our reactive force field simulations clarify the landing mechanisms of the lysozymes and their fragments on collectors with different natures (gold- and hydrogen-terminated graphite). The results highlight the conditions of soft and reactive landing on rigid surfaces, the effects of the protein structure, energy, and incidence angle before landing, and the adhesion forces with the collector substrate. Many of the obtained results can be generalized to other soft and reactive landing approaches used for biomolecules such as electrospray ionization and matrix-assisted laser desorption ionization.
Collapse
Affiliation(s)
- Samuel Bertolini
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y, Zhang W. Magnetic field-assisted surface engineering technology for active regulation of Fe 3O 4 medium to enable the laccase electrochemical biosensing of catechol with visible stripe patterns. Anal Chim Acta 2024; 1311:342739. [PMID: 38816161 DOI: 10.1016/j.aca.2024.342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Catechol (CC), a prevalent phenolic compound, is a byproduct in various agricultural, chemical, and industrial processes. CC detection is crucial for safeguarding water quality and plays a pivotal role in enhancing the overall quality of life of individuals. Electrochemical biosensors exhibit rapid responses, have small sizes, and can be used for real-time monitoring. Therefore, the development of a fast and sensitive electrochemical biosensor for CC detection is crucial. RESULT In this study, a laccase-based electrochemical biosensor for detection of CC is successfully developed using Fe3O4 nanoparticles as medium and optimized by applying a magnetic field. This research proposes a unique strategy for biosensor enhancement by actively controlling the distribution of magnetic materials on the electrode surface through the application of a magnetic field, resulting in a visibly alternating stripe pattern. This approach effectively disperses magnetic particles, preventing their aggregation and reducing the boundary layer thickness, enhancing the electrochemical response of the biosensor. After fabrication condition optimization, CC is successfully detected using this biosensor. The fabricated sensor exhibits excellent performance with a wide linear detection range of 10-1000 μM, a low detection limit of 1.25 μM, and a sensitivity of 7.9 μA/mM. The fabricated sensor exhibits good selectivity and reliable detection in real water samples. In addition, the laccase-based sensor has the potential for the fast and accurate monitoring of CC in olive oil. SIGNIFICANCE The magnetic field optimization in this study significantly improved the performance of the electrochemical biosensor for detecting CC in environmental samples. Overall, the sensor developed in this study has the potential for fast and accurate monitoring of CC in environmental samples, highlighting the potential importance of a magnetic field environment in improving the performance of catechol electrochemical biosensors.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
5
|
Song C, Wang F, Zhang X, Ma Y, Wu Y, He M, Niu X, Sun M. CoMnO x Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu 2. BIOSENSORS 2024; 14:178. [PMID: 38667171 PMCID: PMC11048373 DOI: 10.3390/bios14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Transition metal doping is an ideal strategy to construct multifunctional and efficient nanozymes for biosensing. In this work, a metal-doped CoMnOx nanozyme was designed and synthesized by hydrothermal reaction and high-temperature calcination. Based on its oxidase activity, an "on-off-on" smartphone sensing platform was established to detect ziram and Cu2+. The obtained flower-shaped CoMnOx could exhibit oxidase-, catalase-, and laccase-like activities. The oxidase activity mechanism of CoMnOx was deeply explored. O2 molecules adsorbed on the surface of CoMnOx were activated to produce a large amount of O2·-, and then, O2·- could extract acidic hydrogen from TMB to produce blue oxTMB. Meanwhile, TMB was oxidized directly to the blue product oxTMB via the high redox ability of Co species. According to the excellent oxidase-like activity of CoMnOx, a versatile colorimetric detection platform for ziram and Cu2+ was successfully constructed. The linear detection ranges for ziram and Cu2+ were 5~280 μM and 80~360 μM, and the detection limits were 1.475 μM and 3.906 μM, respectively. In addition, a portable smartphone platform for ziram and Cu2+ sensing was established for instant analysis, showing great application promise in the detection of real samples including environmental soil and water.
Collapse
Affiliation(s)
- Chang Song
- School of Arts and Media, Sichuan Agricultural University, Chengdu 611130, China
| | - Fangfang Wang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xin Zhang
- School of Arts and Media, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxia Ma
- School of Arts and Media, Sichuan Agricultural University, Chengdu 611130, China
| | - Yangyu Wu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mingxia He
- College of Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
6
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
7
|
Lee JY, Li A, Prabhakaran V, Zhang X, Harrilal CPP, Kovarik L, Ibrahim YM, Smith RD, Garimella SV. Mobility Selective Ion Soft-Landing and Characterization Enabled Using Structures for Lossless Ion Manipulation. Anal Chem 2024; 96:3373-3381. [PMID: 38345945 PMCID: PMC11191849 DOI: 10.1021/acs.analchem.3c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
While conventional ion-soft landing uses the mass-to-charge (m/z) ratio to achieve molecular selection for deposition, here we demonstrate the use of Structures for Lossless Ion Manipulation (SLIM) for mobility-based ion selection and deposition. The dynamic rerouting capabilities of SLIM were leveraged to enable the rerouting of a selected range of mobilities to a different SLIM path (rather than MS) that terminated at a deposition surface. A selected mobility range from a phosphazene ion mixture was rerouted and deposited with a current pulse (∼150 pA) resembling its mobility peak. In addition, from a mixture of tetra-alkyl ammonium (TAA) ions containing chain lengths of C5-C8, selected chains (C6, C7) were collected on a surface, reconstituted into solution-phase, and subsequently analyzed with a SLIM-qToF to obtain an IMS/MS spectrum, confirming the identity of the selected species. Further, this method was used to characterize triply charged tungsten-polyoxometalate anions, PW12O403- (WPOM). The arrival time distribution of the IMS/MS showed multiple peaks associated with the triply charged anion (PW12O403-), of which a selected ATD was deposited and imaged using TEM. Additionally, the identity of the deposited WPOM was ascertained using energy-dispersive (EDS) spectroscopy. Further, we present theory and computations that reveal ion landing energies, the ability to modulate the energies, and deposition spot sizes.
Collapse
Affiliation(s)
- Jung Y. Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | | | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | | | - Libor Kovarik
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Sandilya V.B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| |
Collapse
|
8
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
9
|
刘 轩, 王 玉, 梁 紫, 连 小, 黄 棣, 胡 银, 魏 延. [Progress in preparation and application of sodium alginate microspheres]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:792-798. [PMID: 37666771 PMCID: PMC10477377 DOI: 10.7507/1001-5515.202211048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/23/2023] [Indexed: 09/06/2023]
Abstract
Sodium alginate (SA) is a kind of natural polymer material extracted from kelp, which has excellent biocompatibility, non-toxicity, biodegradability and abundant storage capacity. The formation condition of sodium alginate gel is mild, effectively avoiding the inactivation of active substances. After a variety of preparation methods, sodium alginate microspheres are widely used in the fields of biomaterials and tissue engineering. This paper reviewed the common methods of preparing alginate microspheres, including extrusion, emulsification, electrostatic spraying, spray drying and coaxial airflow, and discussed their applications in biomedical fields such as bone repair, hemostasis and drug delivery.
Collapse
Affiliation(s)
- 轩妤 刘
- 太原理工大学 生物医学工程学院 生物医学工程系,纳米生物材料与再生医学研究中心(太原 030024)Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 玉辉 王
- 太原理工大学 生物医学工程学院 生物医学工程系,纳米生物材料与再生医学研究中心(太原 030024)Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 紫微 梁
- 太原理工大学 生物医学工程学院 生物医学工程系,纳米生物材料与再生医学研究中心(太原 030024)Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- 太原理工大学 生物医学工程研究所,材料强度与结构冲击山西省重点实验室(太原 030024)Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 小洁 连
- 太原理工大学 生物医学工程学院 生物医学工程系,纳米生物材料与再生医学研究中心(太原 030024)Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- 太原理工大学 生物医学工程研究所,材料强度与结构冲击山西省重点实验室(太原 030024)Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 棣 黄
- 太原理工大学 生物医学工程学院 生物医学工程系,纳米生物材料与再生医学研究中心(太原 030024)Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- 太原理工大学 生物医学工程研究所,材料强度与结构冲击山西省重点实验室(太原 030024)Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 银春 胡
- 太原理工大学 生物医学工程学院 生物医学工程系,纳米生物材料与再生医学研究中心(太原 030024)Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- 太原理工大学 生物医学工程研究所,材料强度与结构冲击山西省重点实验室(太原 030024)Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 延 魏
- 太原理工大学 生物医学工程学院 生物医学工程系,纳米生物材料与再生医学研究中心(太原 030024)Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- 太原理工大学 生物医学工程研究所,材料强度与结构冲击山西省重点实验室(太原 030024)Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
10
|
Zhao Y, Yang J, Wu Y, Huang B, Xu L, Yang J, Liang B, Han L. Construction of bacterial laccase displayed on the microbial surface for ultrasensitive biosensing of phenolic pollutants with nanohybrids-enhanced performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131265. [PMID: 36989770 DOI: 10.1016/j.jhazmat.2023.131265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Although bacterial laccase (BLac) has many advantages including short fermentation period and adaptable activity to wide temperature and pH ranges, it is of challenge and significance to apply BLac to the biosensors, due to the intracellular secretion and poor electron transfer efficiency of BLac. Here, cell surface-displayed BLac (CSDBLac) was successfully constructed as whole-cell biocatalyst through microbial surface display technology, eliminating the mass transfer restriction and laborious purification steps. Meanwhile, MXenes/polyetherimide-multiwalled carbon nanotubes (MXenes/PEI-MWCNTs) nanohybrids were designed to immobilize CSDBLac and improve their electrochemical activity. Then, an electrochemical biosensor was successfully constructed to detect common phenolic pollutants (catechol and hydroquinone) by the co-immobilization of CSDBLac and MXenes/PEI-MWCNTs nanohybrids onto a glassy carbon electrode. Subsequently, it was successfully applied to the water samples assay with good reliability and repeatability. This work innovatively used BLac and nanohybrid as the core elements of biosensor, which not only effectively solved the application bottleneck of BLac on biosensors, but also dramatically promote the electro transfer efficiency between whole-cell biocatalyst and electrode. This method is of profound meanings for significantly improving the performance of phenolic biosensors and other biosensors from the origin.
Collapse
Affiliation(s)
- Yanfang Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jing Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Yuqing Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jianming Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Bo Liang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China.
| |
Collapse
|
11
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
12
|
Decarli NO, Zapp E, de Souza BS, Santana ER, Winiarski JP, Vieira IC. Biosensor based on laccase-halloysite nanotube and imidazolium zwitterionic surfactant for dopamine determination. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Deniz SA, Goker S, Toppare L, Soylemez S. Fabrication of D–A–D type conducting polymer, carbon nanotubes and silica nanoparticle-based laccase biosensor for catechol detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj02147a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A sensing platform for catechol detection incorporating triple key materials based on SiNPs, D–A–D type conducting polymer, and MWCNTs.
Collapse
Affiliation(s)
| | - Seza Goker
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Solid Propellant Department, Roketsan Missiles Inc, Ankara 06780, Turkey
| | - Levent Toppare
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Saniye Soylemez
- Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
- Department of Chemistry, Ordu University, Ordu 52200, Turkey
| |
Collapse
|