1
|
Liu F, Qiao K, Meng W, Liu J, Gao Y, Zhu J. Construction of a CRISPR Interference System for Gene Knockdown in Stenotrophomonas maltophilia AGS-1 from Aerobic Granular Sludge. ACS Synth Biol 2023; 12:3497-3504. [PMID: 37906167 DOI: 10.1021/acssynbio.3c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To identify the function of attachment genes involved in biofilm formation in Stenotrophomonas maltophilia AGS-1 isolated from aerobic granular sludge, an effective gene molecular tool is needed. We developed a two-plasmid CRISPRi system in Stenotrophomonas maltophilia AGS-1. One plasmid expressed dCas9 protein with the l-arabinose inducible promoter, and the other plasmid contained the sgRNA cassette complementary to the target gene. Under control of the araC-inducible promoter, this system exhibited little leaky basal expression and highly induced expression that silenced endogenous and exogenous genes with reversible knockdown. This system achieved up to 211-fold suppression for mCherry expression on the nontemplate strand compared to the template strand (91-fold). The utility of the developed CRISPRi platform was also characterized by suppressing the xanA and rpfF genes. The expression of these two genes was rapidly depleted and the adhesion ability decreased, which demonstrated that the modulation of either gene was an important factor for biofilm formation of the AGS-1 strain. The system also tested the ability to simultaneously silence transcriptional suppression of multiple targeted genes, an entire operon, or part of it. Lastly, the use of CRISPRi allowed us to dissect the gene intricacies involved in flagellar biosynthesis. Collectively, these results demonstrated that the CRISPRi system was a simple, feasible, and controllable manipulation system of gene expression in the AGS-1 strain.
Collapse
Affiliation(s)
- Fan Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
- R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| | - Kai Qiao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Meng
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Simulation, Beijing 100875, China
| | - Jia Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yiyun Gao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing 100875, China
- R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| |
Collapse
|
2
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
3
|
Sonawane JM, Rai AK, Sharma M, Tripathi M, Prasad R. Microbial biofilms: Recent advances and progress in environmental bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153843. [PMID: 35176385 DOI: 10.1016/j.scitotenv.2022.153843] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 05/21/2023]
Abstract
Microbial biofilms are formed by adherence of the bacteria through their secreted polymer matrices. The major constituents of the polymer matrices are extracellular DNAs, proteins, polysaccharides. Biofilms have exhibited a promising role in the area of bioremediation. These activities can be further improved by tuning the parameters like quorum sensing, characteristics of the adhesion surface, and other environmental factors. Organic pollutants have created a global concern because of their long-term toxicity on human, marine, and animal life. These contaminants are not easily degradable and continue to prevail in the environment for an extended period. Biofilms are being used for the remediation of different pollutants, among which organic pollutants have been of significance. The bioremediation of organic contaminants using biofilms is an eco-friendly, cheap, and green process. However, the development of this technology demands knowledge on the mechanism of action of the microbes to form the biofilm, types of specific bacteria or fungi responsible for the degradation of a particular organic compound, and the mechanistic role of the biofilm in the degradation of the pollutants. This review puts forth a comprehensive summary of the role of microbial biofilms in the bioremediation of different environment-threatening organic pollutants.
Collapse
Affiliation(s)
- Jayesh M Sonawane
- Department of Chemistry, Alexandre-Vachon Pavilion, Laval University, Quebec G1V 0A6, Canada
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India.
| |
Collapse
|
4
|
Han P, Teo WZ, Yew WS. Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. ENGINEERING BIOLOGY 2022; 6:23-34. [PMID: 36968558 PMCID: PMC9995160 DOI: 10.1049/enb2.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
In the face of a burgeoning stream of e-waste globally, e-waste recycling becomes increasingly imperative, not only to mitigate the environmental and health risks it poses but also as an urban mining strategy for resource recovery of precious metals, rare Earth elements, and even plastics. As part of the continual efforts to develop greener alternatives to conventional approaches of e-waste recycling, biologically assisted degradation of e-waste offers a promising recourse by capitalising on certain microorganisms' innate ability to interact with metals or degrade plastics. By harnessing emerging genetic tools in synthetic biology, the evolution of novel or enhanced capabilities needed to advance bioremediation and resource recovery could be potentially accelerated by improving enzyme catalytic abilities, modifying substrate specificities, and increasing toxicity tolerance. Yet, the management of e-waste presents formidable challenges due to its massive volume, high component complexity, and associated toxicity. Several limitations will need to be addressed before nascent laboratory-scale achievements in bioremediation can be translated to viable industrial applications. Nonetheless, vested groups, involving both start-up and established companies, have taken visionary steps towards deploying microbes for commercial implementation in e-waste recycling.
Collapse
Affiliation(s)
- Ping Han
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wei Zhe Teo
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
de Lima DC, Medeiros IG, de Cássia Silva-Portela R, da Silva Junior FC, Fassarela Agnez-Lima L, de Souza JES, Batistuzzo de Medeiros SR. Identification of plasmids from Brazilian Chromobacterium violaceum strains. Can J Microbiol 2021; 68:1-10. [PMID: 34780296 DOI: 10.1139/cjm-2021-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromobacterium violaceum is an opportunistic pathogen found in tropical and subtropical regions worldwide. Chromobacterium violaceum infections are difficult to treat, and many strains are resistant to antibiotics. Recently, a novel plasmid (pChV1) was discovered in the type strain ATCC 12472, suggesting that other C. violaceum strains may harbor extra-chromosomal DNA. The aim of the present study was to detect and compare new plasmids in Brazilian strains of C. violaceum using next-generation sequencing techniques. We obtained draft genomes of six plasmids from strains isolated from the Amazon region and aligned them with pChV1. At least three plasmids, CVAC05, CVACO2, and CVT8, were similar to pChV1. Phylogenetic analysis suggested that these new extra-chromosomal DNA sequences have a common origin with pChV1 but have diverged. Many of the ORFs detected were related to plasmid segregation/maintenance, viral structural proteins, and proteins with unknown functions. These findings may enable better genetic manipulation of C. violaceum, which will enhance our ability to exploit this valuable microorganism in industrial and clinical applications.
Collapse
Affiliation(s)
- Daniel Chaves de Lima
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, CEP 59015-000, Natal, Brazil
- Laboratório de Biologia Molecular e Genômica, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
| | - Inácio Gomes Medeiros
- Laboratório de Biologia Molecular e Genômica, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
- Programa de Pós-Graduação em Bioinformática, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, CEP 59056-450, Natal, Brazil
| | - Rita de Cássia Silva-Portela
- Laboratório de Biologia Molecular e Genômica, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
| | | | - Lucymara Fassarela Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
- Programa de Pós-Graduação em Bioinformática, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
| | - Jorge Estefano Santana de Souza
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
- Programa de Pós-Graduação em Bioinformática, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, CEP 59078-970, Natal, Brazil
| | | |
Collapse
|
6
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Simultaneous transformation of five vectors in Gluconobacter oxydans. Plasmid 2021; 117:102588. [PMID: 34256060 DOI: 10.1016/j.plasmid.2021.102588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Gluconobacter oxydans is an obligate Gram-negative bacterium that belongs to the family Acetobacteraceae. It is one of the most frequently used microorganisms in industrial biotechnology to produce chemicals related to incomplete oxidation. However, the fine-tuning of G. oxydans is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. Thus, a series of shuttle vectors for G. oxydans inspired by a series of wild-type plasmids in different G. oxydans strains were constructed. Fifteen shuttle vectors were employed to express mCherry in G. oxydans WSH-003 using the replication origin of these wild-type plasmids. Among them, the intensity of fluorescent proteins expressed by p15-K-mCherry was about 10 times that of fluorescent proteins expressed by p5-K-mCherry. Quantitative real-time polymerase chain reaction showed that the relative copy number of p15-K-mCherry reached 19 and had high stability. In contrast, some of the plasmids had a relative copy number of less than 10. The co-expression of multiple shuttle vectors revealed five shuttle vectors that could be transformed into G. oxydans WSH-003 and could express five different fluorescent proteins. The shuttle vectors will facilitate genetic operations for Gluconobacter strains to produce useful compounds more efficiently.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Mukherjee M, Cao B. Engineering controllable biofilms for biotechnological applications. Microb Biotechnol 2021; 14:74-78. [PMID: 33249757 PMCID: PMC7888450 DOI: 10.1111/1751-7915.13715] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Manisha Mukherjee
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
- School of Civil and Environmental EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
- School of Civil and Environmental EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
8
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
9
|
Mukherjee M, Zaiden N, Teng A, Hu Y, Cao B. Shewanella biofilm development and engineering for environmental and bioenergy applications. Curr Opin Chem Biol 2020; 59:84-92. [PMID: 32750675 DOI: 10.1016/j.cbpa.2020.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
The genus Shewanella comprises about 70 species of Gram-negative, facultative anaerobic bacteria inhabiting various environments, which have shown great potential in various biotechnological applications ranging from environmental bioremediation, metal(loid) recovery and material synthesis to bioenergy generation. Most environmental and energy applications of Shewanella involve the biofilm mode of growth on surfaces of solid minerals or electrodes. In this article, we first provide an overview of Shewanella biofilm biology with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanella biofilm development. Then we review strategies recently exploited to engineer Shewanella biofilms to improve biofilm-mediated bioprocesses.
Collapse
Affiliation(s)
- Manisha Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Norazean Zaiden
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637335, Singapore
| | - Aloysius Teng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637335, Singapore
| | - Yidan Hu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637335, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|