1
|
Gao M, Zhao Y, Yao Z, Su Q, Van Beek P, Shao Z. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production. Nat Commun 2023; 14:7797. [PMID: 38016984 PMCID: PMC10684500 DOI: 10.1038/s41467-023-43049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Plant-sourced aromatic amino acid (AAA) derivatives are a vast group of compounds with broad applications. Here, we present the development of a yeast consortium for efficient production of (S)-norcoclaurine, the key precursor for benzylisoquinoline alkaloid biosynthesis. A xylose transporter enables the concurrent mixed-sugar utilization in Scheffersomyces stipitis, which plays a crucial role in enhancing the flux entering the highly regulated shikimate pathway located upstream of AAA biosynthesis. Two quinate permeases isolated from Aspergillus niger facilitates shikimate translocation to the co-cultured Saccharomyces cerevisiae that converts shikimate to (S)-norcoclaurine, resulting in the maximal titer (11.5 mg/L), nearly 110-fold higher than the titer reported for an S. cerevisiae monoculture. Our findings magnify the potential of microbial consortium platforms for the economical de novo synthesis of complex compounds, where pathway modularization and compartmentalization in distinct specialty strains enable effective fine-tuning of long biosynthetic pathways and diminish intermediate buildup, thereby leading to increases in production.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Qianhe Su
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Payton Van Beek
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA.
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA.
- Bioeconomy Institute, Iowa State University, Ames, IA, USA.
- The Ames Laboratory, Ames, IA, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Wu ZY, Sun W, Shen Y, Pratas J, Suthers PF, Hsieh PH, Dwaraknath S, Rabinowitz JD, Maranas CD, Shao Z, Yoshikuni Y. Metabolic engineering of low-pH-tolerant non-model yeast, Issatchenkia orientalis, for production of citramalate. Metab Eng Commun 2023; 16:e00220. [PMID: 36860699 PMCID: PMC9969067 DOI: 10.1016/j.mec.2023.e00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, Issatchenkia orientalis, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of I. orientalis for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (cimA) variant for expression in I. orientalis. We then adapted a piggyBac transposon system for I. orientalis that allowed us to simultaneously explore the effects of different cimA gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-cimA strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of I. orientalis as a chassis for citramalate production.
Collapse
Affiliation(s)
- Zong-Yen Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wan Sun
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011-1027, USA,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA,Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jimmy Pratas
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA,Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Patrick F. Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA,Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ping-Hung Hsieh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sudharsan Dwaraknath
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA,Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA,Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zengyi Shao
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011-1027, USA,Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA,Bioeconomy Institute, Iowa State University, Ames, IA, 50011, USA,The Ames Laboratory, Ames, IA, 50011, USA,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA,Corresponding author. Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011-1027, USA.
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA,Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA,Global Center for Food, Land, and Water Resources, Hokkaido University, Hokkaido, 060-8589, Japan,Corresponding author. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Ploessl D, Zhao Y, Shao Z. Engineering of non-model eukaryotes for bioenergy and biochemical production. Curr Opin Biotechnol 2023; 79:102869. [PMID: 36584447 DOI: 10.1016/j.copbio.2022.102869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022]
Abstract
The prospect of leveraging naturally occurring phenotypes to overcome bottlenecks constraining the bioeconomy has marshalled increased exploration of nonconventional organisms. This review discusses the status of non-model eukaryotic species in bioproduction, the evaluation criteria for effectively matching a candidate host to a biosynthetic process, and the genetic engineering tools needed for host domestication. We present breakthroughs in genome editing and heterologous pathway design, delving into innovative spatiotemporal modulation strategies that potentiate more refined engineering capabilities. We cover current understanding of genetic instability and its ramifications for industrial scale-up, highlighting key factors and possible remedies. Finally, we propose future opportunities to expand the current collection of available hosts and provide guidance to benefit the broader bioeconomy.
Collapse
Affiliation(s)
- Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA; Bioeconomy Institute, Iowa State University, Ames, IA, USA; The Ames Laboratory, Ames, IA, USA.
| |
Collapse
|
4
|
Huang C, Wang C, Luo Y. Research progress of pathway and genome evolution in microbes. Synth Syst Biotechnol 2022; 7:648-656. [PMID: 35224232 PMCID: PMC8857405 DOI: 10.1016/j.synbio.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Microbes can produce valuable natural products widely applied in medicine, food and other important fields. Nevertheless, it is usually challenging to achieve ideal industrial yields due to low production rate and poor toxicity tolerance. Evolution is a constant mutation and adaptation process used to improve strain performance. Generally speaking, the synthesis of natural products in microbes is often intricate, involving multiple enzymes or multiple pathways. Individual evolution of a certain enzyme often fails to achieve the desired results, and may lead to new rate-limiting nodes that affect the growth of microbes. Therefore, it is inevitable to evolve the biosynthetic pathways or the whole genome. Here, we reviewed the pathway-level evolution including multi-enzyme evolution, regulatory elements engineering, and computer-aided engineering, as well as the genome-level evolution based on several tools, such as genome shuffling and CRISPR/Cas systems. Finally, we also discussed the major challenges faced by in vivo evolution strategies and proposed some potential solutions.
Collapse
Affiliation(s)
- Chaoqun Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chang Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Ploessl D, Zhao Y, Cao M, Ghosh S, Lopez C, Sayadi M, Chudalayandi S, Severin A, Huang L, Gustafson M, Shao Z. A repackaged CRISPR platform increases homology-directed repair for yeast engineering. Nat Chem Biol 2022; 18:38-46. [PMID: 34711982 DOI: 10.1038/s41589-021-00893-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Inefficient homology-directed repair (HDR) constrains CRISPR-Cas9 genome editing in organisms that preferentially employ nonhomologous end joining (NHEJ) to fix DNA double-strand breaks (DSBs). Current strategies used to alleviate NHEJ proficiency involve NHEJ disruption. To confer precision editing without NHEJ disruption, we identified the shortcomings of the conventional CRISPR platforms and developed a CRISPR platform-lowered indel nuclease system enabling accurate repair (LINEAR)-which enhanced HDR rates (to 67-100%) compared to those in previous reports using conventional platforms in four NHEJ-proficient yeasts. With NHEJ preserved, we demonstrate its ability to survey genomic landscapes, identifying loci whose spatiotemporal genomic architectures yield favorable expression dynamics for heterologous pathways. We present a case study that deploys LINEAR precision editing and NHEJ-mediated random integration to rapidly engineer and optimize a microbial factory to produce (S)-norcoclaurine. Taken together, this work demonstrates how to leverage an antagonizing pair of DNA DSB repair pathways to expand the current collection of microbial factories.
Collapse
Affiliation(s)
- Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Saptarshi Ghosh
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Carmen Lopez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA
| | - Maryam Sayadi
- The Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Siva Chudalayandi
- The Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Andrew Severin
- The Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Lei Huang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Marissa Gustafson
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA. .,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA. .,Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA. .,Bioeconomy Institute, Iowa State University, Ames, IA, USA. .,The Ames Laboratory, Ames, IA, USA. .,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|