1
|
Zilberzwige-Tal S, Fontanarrosa P, Bychenko D, Dorfan Y, Gazit E, Myers CJ. Investigating and Modeling the Factors That Affect Genetic Circuit Performance. ACS Synth Biol 2023; 12:3189-3204. [PMID: 37916512 PMCID: PMC10661042 DOI: 10.1021/acssynbio.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 11/03/2023]
Abstract
Over the past 2 decades, synthetic biology has yielded ever more complex genetic circuits that are able to perform sophisticated functions in response to specific signals. Yet, genetic circuits are not immediately transferable to an outside-the-lab setting where their performance is highly compromised. We propose introducing a broader test step to the design-build-test-learn workflow to include factors that might contribute to unexpected genetic circuit performance. As a proof of concept, we have designed and evaluated a genetic circuit in various temperatures, inducer concentrations, nonsterilized soil exposure, and bacterial growth stages. We determined that the circuit's performance is dramatically altered when these factors differ from the optimal lab conditions. We observed significant changes in the time for signal detection as well as signal intensity when the genetic circuit was tested under nonoptimal lab conditions. As a learning effort, we then proceeded to generate model predictions in untested conditions, which is currently lacking in synthetic biology application design. Furthermore, broader test and learn steps uncovered a negative correlation between the time it takes for a gate to turn ON and the bacterial growth phases. As the synthetic biology discipline transitions from proof-of-concept genetic programs to appropriate and safe application implementations, more emphasis on test and learn steps (i.e., characterizing parts and circuits for a broad range of conditions) will provide missing insights on genetic circuit behavior outside the lab.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Pedro Fontanarrosa
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Darya Bychenko
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Yuval Dorfan
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Bio-engineering,
Electrical Engineering Faculty, Holon Institute
of Technology (HIT), Holon 5810201, Israel
- Alagene
Ltd., Innovation Center, Reichman University, Herzliya 7670608, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Chris J. Myers
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Ikwuagwu B, Tullman-Ercek D. Virus-like particles for drug delivery: a review of methods and applications. Curr Opin Biotechnol 2022; 78:102785. [PMID: 36099859 DOI: 10.1016/j.copbio.2022.102785] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Virus-like particles (VLPs) are self-assembling protein nanoparticles that have great promise as vectors for drug delivery. VLPs are derived from viruses but retain none of their infection or replication capabilities. These protein particles have defined surface chemistries, uniform sizes, and stability properties that make them attractive starting points for drug-delivery scaffolds. Here, we review recent advances in tailoring VLPs for drug-delivery applications, including VLP platform engineering approaches as well as methods for cargo loading, activation, and release. Finally, we highlight several successes using VLPs for drug delivery in model systems.
Collapse
Affiliation(s)
- Bon Ikwuagwu
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Zilberzwige-Tal S, Gazit D, Adsi H, Gartner M, Behl R, Laor Bar-Yosef D, Gazit E. Engineered Riboswitch Nanocarriers as a Possible Disease-Modifying Treatment for Metabolic Disorders. ACS NANO 2022; 16:11733-11741. [PMID: 35815521 DOI: 10.1021/acsnano.2c02802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both DNA- and RNA-based nanotechnologies are remarkably useful for the engineering of molecular devices in vitro and are applied in a vast collection of applications. Yet, the ability to integrate functional nucleic acid nanostructures in applications outside of the lab requires overcoming their inherent degradation sensitivity and subsequent loss of function. Viruses are minimalistic yet sophisticated supramolecular assemblies, capable of shielding their nucleic acid content in nuclease-rich environments. Inspired by this natural ability, we engineered RNA-virus-like particles (VLPs) nanocarriers (NCs). We showed that the VLPs can function as an exceptional protective shell against nuclease-mediated degradation. We then harnessed biological recognition elements and demonstrated how engineered riboswitch NCs can act as a possible disease-modifying treatment for genetic metabolic disorders. The functional riboswitch is capable of selectively and specifically binding metabolites and preventing their self-assembly process and its downstream effects. When applying the riboswitch nanocarriers to an in vivo yeast model of adenine accumulation and self-assembly, significant inhibition of the sensitivity to adenine feeding was observed. In addition, using an amyloid-specific dye, we proved the riboswitch nanocarriers' ability to reduce the level of intracellular amyloid-like metabolite cytotoxic structures. The potential of this RNA therapeutic technology does not apply only to metabolic disorders, as it can be easily fine-tuned to be applied to other conditions and diseases.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Danielle Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanaa Adsi
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Myra Gartner
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rahat Behl
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|