1
|
Chan DTC, Bernstein HC. Pangenomic landscapes shape performances of a synthetic genetic circuit across Stutzerimonas species. mSystems 2024; 9:e0084924. [PMID: 39166875 PMCID: PMC11406997 DOI: 10.1128/msystems.00849-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Engineering identical genetic circuits into different species typically results in large differences in performance due to the unique cellular environmental context of each host, a phenomenon known as the "chassis-effect" or "context-dependency". A better understanding of how genomic and physiological contexts underpin the chassis-effect will improve biodesign strategies across diverse microorganisms. Here, we combined a pangenomic-based gene expression analysis with quantitative measurements of performance from an engineered genetic inverter device to uncover how genome structure and function relate to the observed chassis-effect across six closely related Stutzerimonas hosts. Our results reveal that genome architecture underpins divergent responses between our chosen non-model bacterial hosts to the engineered device. Specifically, differential expression of the core genome, gene clusters shared between all hosts, was found to be the main source of significant concordance to the observed differential genetic device performance, whereas specialty genes from respective accessory genomes were not significant. A data-driven investigation revealed that genes involved in denitrification and components of trans-membrane transporter proteins were among the most differentially expressed gene clusters between hosts in response to the genetic device. Our results show that the chassis-effect can be traced along differences among the most conserved genome-encoded functions and that these differences create a unique biodesign space among closely related species.IMPORTANCEContemporary synthetic biology endeavors often default to a handful of model organisms to host their engineered systems. Model organisms such as Escherichia coli serve as attractive hosts due to their tractability but do not necessarily provide the ideal environment to optimize performance. As more novel microbes are domesticated for use as biotechnology platforms, synthetic biologists are urged to explore the chassis-design space to optimize their systems and deliver on the promises of synthetic biology. The consequences of the chassis-effect will therefore only become more relevant as the field of biodesign grows. In our work, we demonstrate that the performance of a genetic device is highly dependent on the host environment it operates within, promoting the notion that the chassis can be considered a design variable to tune circuit function. Importantly, our results unveil that the chassis-effect can be traced along similarities in genome architecture, specifically the shared core genome. Our study advocates for the exploration of the chassis-design space and is a step forward to empowering synthetic biologists with knowledge for more efficient exploration of the chassis-design space to enable the next generation of broad-host-range synthetic biology.
Collapse
Affiliation(s)
- Dennis Tin Chat Chan
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Hans C Bernstein
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Costan SA, Ryan PM, Kim H, Wolgemuth CW, Riedel-Kruse IH. Biophysical characterization of synthetic adhesins for predicting and tuning engineered living material properties. MATTER 2024; 7:2125-2143. [PMID: 39165662 PMCID: PMC11335339 DOI: 10.1016/j.matt.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Bacterial synthetic multicellular systems are promising platforms for engineered living materials (ELMs) for medical, biosynthesis, environmental, and smart materials applications. Recent advancements in genetically encoded adhesion toolkits have enabled precise manipulation of cell-cell adhesion and the design and patterning of self-assembled multicellular materials. However, in contrast to gene regulation in synthetic biology, the characterization and control of synthetic adhesins remains limited. Here, we demonstrate the quantitative characterization of a bacterial synthetic adhesion toolbox through various biophysical methods. We determine key parameters, including number of adhesins per cell, in-membrane diffusion constant, production and decay rates, and bond-breaking force between adhesins. With these parameters, we demonstrate the bottom-up prediction and quantitative tuning of macroscopic ELM properties (tensile strength) and, furthermore, that cells inside ELMs are connected only by a small fraction of available adhesins. These results enable the rational engineering, characterization, and modeling of other synthetic and natural adhesins and multicellular consortia.
Collapse
Affiliation(s)
- Stefana A. Costan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Paul M. Ryan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | - Honesty Kim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Charles W. Wolgemuth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
- Lead contact
| |
Collapse
|
3
|
Sechkar K, Steel H, Perrino G, Stan GB. A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits. Nat Commun 2024; 15:1981. [PMID: 38438391 PMCID: PMC10912777 DOI: 10.1038/s41467-024-46410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Within a cell, synthetic and native genes compete for expression machinery, influencing cellular process dynamics through resource couplings. Models that simplify competitive resource binding kinetics can guide the design of strategies for countering these couplings. However, in bacteria resource availability and cell growth rate are interlinked, which complicates resource-aware biocircuit design. Capturing this interdependence requires coarse-grained bacterial cell models that balance accurate representation of metabolic regulation against simplicity and interpretability. We propose a coarse-grained E. coli cell model that combines the ease of simplified resource coupling analysis with appreciation of bacterial growth regulation mechanisms and the processes relevant for biocircuit design. Reliably capturing known growth phenomena, it provides a unifying explanation to disparate empirical relations between growth and synthetic gene expression. Considering a biomolecular controller that makes cell-wide ribosome availability robust to perturbations, we showcase our model's usefulness in numerically prototyping biocircuits and deriving analytical relations for design guidance.
Collapse
Affiliation(s)
- Kirill Sechkar
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Giansimone Perrino
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Qin C, Xiang Y, Liu J, Zhang R, Liu Z, Li T, Sun Z, Ouyang X, Zong Y, Zhang HM, Ouyang Q, Qian L, Lou C. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nat Commun 2023; 14:1500. [PMID: 36932109 PMCID: PMC10023750 DOI: 10.1038/s41467-023-37244-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Context-dependency of mammalian transcriptional elements has hindered the quantitative investigation of multigene expression stoichiometry and its biological functions. Here, we describe a host- and local DNA context-independent transcription system to gradually fine-tune single and multiple gene expression with predictable stoichiometries. The mammalian transcription system is composed of a library of modular and programmable promoters from bacteriophage and its cognate RNA polymerase (RNAP) fused to a capping enzyme. The relative expression of single genes is quantitatively determined by the relative binding affinity of the RNAP to the promoters, while multigene expression stoichiometry is predicted by a simple biochemical model with resource competition. We use these programmable and modular promoters to predictably tune the expression of three components of an influenza A virus-like particle (VLP). Optimized stoichiometry leads to a 2-fold yield of intact VLP complexes. The host-independent orthogonal transcription system provides a platform for dose-dependent control of multiple protein expression which may be applied for advanced vaccine engineering, cell-fate programming and other therapeutic applications.
Collapse
Affiliation(s)
- Chenrui Qin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jie Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Ruilin Zhang
- Yuanpei College, Peking University, 100871, Beijing, China
| | - Ziming Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Tingting Li
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Zhi Sun
- College of Life Science, University of Chinese Academy of Science, 100149, Beijing, China
| | - Xiaoyi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | | | | | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Long Qian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- College of Life Science, University of Chinese Academy of Science, 100149, Beijing, China.
| |
Collapse
|
5
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection. Curr Opin Biotechnol 2022; 76:102753. [PMID: 35872379 DOI: 10.1016/j.copbio.2022.102753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Transcription factor (TF)-based biosensors have been applied in biotechnology for a variety of functions, including protein engineering, dynamic control, environmental detection, and point-of-care diagnostics. Such biosensors are promising analytical tools due to their wide range of detectable ligands and modular nature. However, designing biosensors tailored for applications of interest with the desired performance parameters, including ligand specificity, remains challenging. Biosensors often require significant engineering and tuning to meet desired specificity, sensitivity, dynamic range, and operating range parameters. Another limitation is the orthogonality of biosensors across hosts, given the role of the cellular context. Here, we describe recent advances and examples in the engineering and optimization of TF-based biosensors for plug-and-play small molecule detection. We highlight novel developments in TF discovery and biosensor design, TF specificity engineering, and biosensor tuning, with emphasis on emerging computational methods.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada; Department of Microbiology, Immunology and Infectious Disease, University of Calgary, AB, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada; The Institute of Biomedical Engineering, University of Toronto, ON, Canada.
| |
Collapse
|
6
|
Ryan J, Hong S, Foo M, Kim J, Tang X. Model-Based Investigation of the Relationship between Regulation Level and Pulse Property of I1-FFL Gene Circuits. ACS Synth Biol 2022; 11:2417-2428. [PMID: 35729788 PMCID: PMC9295143 DOI: 10.1021/acssynbio.2c00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mathematical models are powerful tools in guiding the construction of synthetic biological circuits, given their capability of accurately capturing and predicting circuit dynamics. Recent innovations in RNA technology have enabled the development of a variety of new tools for regulating gene expression at both the transcription and translation levels. However, the effects of different regulation levels on the circuit dynamics remain largely unexplored. In this study, we focus on the type 1 incoherent feed-forward loop (I1-FFL) gene circuit with four different variations (TX, TL, HY-1, HY-2), to investigate how regulation at the transcription and translation levels affect the circuit dynamics. We develop a mechanistic model for each of the four circuits and deploy sensitivity analysis to investigate the circuits' dynamics in terms of pulse generation. Based on the analysis, we observe that the repression regulation mechanism dominates the characteristics of the pulse as compared to the activation regulation mechanism and find that the I1-FFL with transcription repression has a higher chance of generating a pulse meeting the desired criteria. The experimental results in Escherichia coli also confirm our findings from the computational analysis. We expect our findings to facilitate future experimental construction of gene circuits with insights on the selection of appropriate transcription and translation regulation tools.
Collapse
Affiliation(s)
- Jordan Ryan
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Seongho Hong
- Department
of Life Sciences, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Mathias Foo
- School
of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Xun Tang
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|