Otero-Muras I, Perez-Carrasco R, Banga JR, Barnes CP. Automated design of gene circuits with optimal mushroom-bifurcation behavior.
iScience 2023;
26:106836. [PMID:
37255663 PMCID:
PMC10225937 DOI:
10.1016/j.isci.2023.106836]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/20/2022] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Recent advances in synthetic biology are enabling exciting technologies, including the next generation of biosensors, the rational design of cell memory, modulated synthetic cell differentiation, and generic multifunctional biocircuits. These novel applications require the design of gene circuits leading to sophisticated behaviors and functionalities. At the same time, designs need to be kept minimal to avoid compromising cell viability. Bifurcation theory addresses such challenges by associating circuit dynamical properties with molecular details of its design. Nevertheless, incorporating bifurcation analysis into automated design processes has not been accomplished yet. This work presents an optimization-based method for the automated design of synthetic gene circuits with specified bifurcation diagrams that employ minimal network topologies. Using this approach, we designed circuits exhibiting the mushroom bifurcation, distilled the most robust topologies, and explored its multifunctional behavior. We then outline potential applications in biosensors, memory devices, and synthetic cell differentiation.
Collapse