1
|
Zhang Y, Gao L, Shi Z, Wu Q, Miao X. Paper-based electrochemiluminescence telomerase activity detection using hybridization chain reaction and CRISPR/Cas12a dual signal amplification. Bioelectrochemistry 2025; 164:108916. [PMID: 39904299 DOI: 10.1016/j.bioelechem.2025.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Sensitive telomerase activity detection becomes particularly significance since the important value of it in early cancer diagnosis as a potential biomarker. Herein, we developed a paper-based analytical devices (PADs) for telomerase activity detection, using positively charged Au@luminol nanoparticles ((+)Au@luminol NPs) as electrochemiluminescence (ECL) signal probe coupling with hybridization chain reaction (HCR) and CRISPR/Cas12a dual signal amplification. Firstly, the initial strong ECL signal was obtained based on the electrostatic adsorption of (+)Au@luminol NPs onto the surface of HCR double-stranded hybrid aggregates. In the presence of telomerase, the primer was efficiently elongated with telomeric repeats of (TTAGGG)n to release activator DNA and trigger the CRISPR/Cas12a, which can prevent the happen of HCR and the adsorption of (+)Au@luminol NPs through cleaving the capture probe on the electrode surface, such results directly inducing the decrease of the ECL signal that was proportional to telomerase concentration, due to the efficient signal amplification of HCR and CRISPR/Cas12a, a low detection limit of 2.3 cells/mL for telomerase could be detected. Moreover, the sensor realized the effective application for telomerase extracts analysis in human serum samples, making it possess potential application value for telomerase activity assays in cancer diagnostics.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012 China.
| | - Liang Gao
- Heji Hospital Affiliated to Changzhi Medical College, Shanxi 046012 China
| | - Zhe Shi
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012 China
| | - Qiong Wu
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012 China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116 China
| |
Collapse
|
2
|
Feng Y, Yang J, He Z, Liu X, Ma C. CRISPR-Cas-based biosensors for the detection of cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6634-6653. [PMID: 39258950 DOI: 10.1039/d4ay01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Along with discovering cancer biomarkers, non-invasive detection methods have played a critical role in early cancer diagnosis and prognostic improvement. Some traditional detection methods have been used for detecting cancer biomarkers, but they are time-consuming and involve materials and human costs. With great flexibility, sensitivity and specificity, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system provides a wide range of application prospects in this field. Herein, we introduce the background of the CRISPR-Cas (CRISPR-associated) system and comprehensively summarize the diagnosis strategies of cancer mediated by the CRISPR-Cas system, including four kinds of biochemical-based markers: nucleic acid, enzyme, tumor-specific protein and exosome. Furthermore, we discuss the challenges in implementing the CRISPR-Cas system in clinical applications.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jinmeng Yang
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ziping He
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinfa Liu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
3
|
Li D, Ju F, Wang H, Fan C, Jacob JC, Gul S, Zaliani A, Wartmann T, Polidori MC, Bruns CJ, Zhao Y. Combination of the biomarkers for aging and cancer? - Challenges and current status. Transl Oncol 2023; 38:101783. [PMID: 37716258 PMCID: PMC10514562 DOI: 10.1016/j.tranon.2023.101783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The proportion of patients diagnosed with cancer has been shown to rise with the increasing aging global population. Advanced age is a major risk factor for morbidity and mortality in older adults. As individuals experience varying health statuses, particularly with age, it poses a challenge for medical professionals in the cancer field to obtain standardized treatment outcomes. Hence, relying solely on chronological age and disease-related parameters is inadequate for clinical decision-making for elderly patients. With functional, multimorbidity-related, and psychosocial changes that occur with aging, oncologic diseases may develop and be treated differently from younger patients, leading to unique challenges in treatment efficacy and tolerance. To overcome this challenge, personalized therapy using biomarkers has emerged as a promising solution. Various categories of biomarkers, including inflammatory, hematological, metabolic, endocrine, and DNA modification-related indicators, may display features related to both cancer and aging, aiding in the development of innovative therapeutic approaches for patients with cancer in old age. Furthermore, physical functional measurements as non-molecular phenotypic biomarkers are being investigated for their potential complementary role in structured multidomain strategies to combat age-related diseases such as cancer. This review provides insight into the current developments, recent discoveries, and significant challenges in cancer and aging biomarkers, with a specific focus on their application in advanced age.
Collapse
Affiliation(s)
- Dai Li
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Ju
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunfu Fan
- Medical faculty, University of Cologne, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Thomas Wartmann
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology (CIO) Aachen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
4
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
5
|
CRISPR/Cas: A New Tool in the Research of Telomeres and Telomerase as Well as a Novel Form of Cancer Therapy. Int J Mol Sci 2022; 23:ijms23063002. [PMID: 35328421 PMCID: PMC8953708 DOI: 10.3390/ijms23063002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their close connection with senescence, aging, and disease, telomeres and telomerase provide a unique and vital research route for boosting longevity and health span. Despite significant advances during the last three decades, earlier studies into these two biological players were impeded by the difficulty of achieving real-time changes inside living cells. As a result of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system’s (Cas) method, targeted genetic studies are now underway to change telomerase, the genes that govern it as well as telomeres. This review will discuss studies that have utilized CRISPR-related technologies to target and modify genes relevant to telomeres and telomerase as well as to develop targeted anti-cancer therapies. These studies greatly improve our knowledge and understanding of cellular and molecular mechanisms that underlie cancer development and aging.
Collapse
|