1
|
Liao L, Shen X, Shen Z, Du G, Li J, Zhang G. CRISPR/Cas9-Based Genome Editing for Protein Expression and Secretion in Kluyveromyces lactis. ACS Synth Biol 2024; 13:2105-2114. [PMID: 38871652 DOI: 10.1021/acssynbio.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The budding yeast Kluyveromyces lactis has emerged as a promising microbial chassis in industrial biotechnology. However, a lack of efficient molecular genetic manipulation tools and strategies has hindered the development of K. lactis as a biomanufacturing platform. In this study, we developed and applied a CRISPR/Cas9-based genome editing method to K. lactis. Single-gene editing efficiency was increased to 80% by disrupting the nonhomologous end-joining-related gene KU80 and performing a series of process optimizations. Subsequently, the CRISPR/Cas9 system was explored based on different sgRNA delivery modes for simultaneous multigene editing. With the aid of the color indicator, the editing efficiencies of two and three genes reached 73.3 and 36%, respectively, in the KlΔKU80 strain. Furthermore, the CRISPR/Cas9 system was used for multisite integration to enhance lactase production and combinatorial knockout of TMED10 and HSP90 to characterize the extracellular secretion of lactase in K. lactis. Generally, genome editing is a powerful tool for constructing K. lactis cell factories for protein and chemical production.
Collapse
Affiliation(s)
- Lingtong Liao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiuru Shen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhiyu Shen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Xia Y, Li Y, Shen W, Yang H, Chen X. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges. Int J Mol Sci 2023; 24:15310. [PMID: 37894990 PMCID: PMC10607330 DOI: 10.3390/ijms242015310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR-Cas) system has undergone substantial and transformative progress. Simultaneously, a spectrum of derivative technologies has emerged, spanning both conventional and non-conventional yeast strains. Non-conventional yeasts, distinguished by their robust metabolic pathways, formidable resilience against diverse stressors, and distinctive regulatory mechanisms, have emerged as a highly promising alternative for diverse industrial applications. This comprehensive review serves to encapsulate the prevailing gene editing methodologies and their associated applications within the traditional industrial microorganism, Saccharomyces cerevisiae. Additionally, it delineates the current panorama of non-conventional yeast strains, accentuating their latent potential in the realm of industrial and biotechnological utilization. Within this discourse, we also contemplate the potential value these tools offer alongside the attendant challenges they pose.
Collapse
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yujie Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Xia Y, Shi Y, Chu J, Zhu S, Luo X, Shen W, Chen X. Efficient Biosynthesis of Acidic/Lactonic Sophorolipids and Their Application in the Remediation of Cyanobacterial Harmful Algal Blooms. Int J Mol Sci 2023; 24:12389. [PMID: 37569764 PMCID: PMC10418985 DOI: 10.3390/ijms241512389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) pose significant threats to human health and natural ecosystems worldwide, primarily caused by water eutrophication, increased surface water temperature, and co-occurring microorganisms. Urgent action is needed to develop an eco-friendly solution to effectively curb the proliferation of CyanoHABs. Sophorolipids (SLs) are fully biodegradable biosurfactants synthesized by Starmerella bombicola. They can be classified into lactone and acid types. The lactone type displays strong antimicrobial activity, while the acid type exhibits good solubility, which make them ideal agents for mitigating CyanoHABs. Nevertheless, the broad utilization of SLs are hindered by their expensive production costs and the absence of effective genetic editing tools in the native host. In this study, we constructed recombinant strains capable of producing either acidic or lactonic SLs using the CRISPR-Cas9 gene editing system. The yields of acidic and lactonic SLs reached 53.64 g/L and 45.32 g/L in a shaking flask, respectively. In a 5 L fermenter, acidic SLs reached 129.7 g/L using low-cost glucose and rapeseed oil as substrates. The addition of 5 mg/L lactonic SLs effectively degraded cyanobacteria within 30 min, and a ratio of 8.25:1.75 of lactonic to acidic SLs showed the highest degradation efficiency. This study offers a safe and promising solution for CyanoHABs treatment.
Collapse
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.S.); (J.C.); (S.Z.); (W.S.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yibo Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.S.); (J.C.); (S.Z.); (W.S.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jieyu Chu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.S.); (J.C.); (S.Z.); (W.S.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shiying Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.S.); (J.C.); (S.Z.); (W.S.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.S.); (J.C.); (S.Z.); (W.S.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.S.); (J.C.); (S.Z.); (W.S.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Effects of Different Gene Editing Modes of CRISPR/Cas9 on Soybean Fatty Acid Anabolic Metabolism Based on GmFAD2 Family. Int J Mol Sci 2023; 24:ijms24054769. [PMID: 36902202 PMCID: PMC10003299 DOI: 10.3390/ijms24054769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Δ12-fatty acid dehydrogenase (FAD2) is the essential enzyme responsible for catalyzing the formation of linoleic acid from oleic acid. CRISPR/Cas9 gene editing technology has been an essential tool for molecular breeding in soybeans. To evaluate the most suitable type of gene editing in soybean fatty acid synthesis metabolism, this study selected five crucial enzyme genes of the soybean FAD2 gene family-GmFAD2-1A, GmFAD2-1B, GmFAD2-2A, GmFAD2-2B, and GmFAD2-2C-and created a CRISPR/Cas9-mediated single gene editing vector system. The results of Sanger sequencing showed that 72 transformed plants positive for T1 generation were obtained using Agrobacterium-mediated transformation, of which 43 were correctly edited plants, with the highest editing efficiency of 88% for GmFAD2-2A. The phenotypic analysis revealed that the oleic acid content of the progeny of GmFAD2-1A gene-edited plants had a higher increase of 91.49% when compared to the control JN18, and the rest of the gene-edited plants in order were GmFAD2-2A, GmFAD2-1B, GmFAD2-2C, and GmFAD2-2B. The analysis of gene editing type has indicated that base deletions greater than 2bp were the predominant editing type in all editing events. This study provides ideas for the optimization of CRISPR/Cas9 gene editing technology and the development of new tools for precise base editing in the future.
Collapse
|
5
|
Zhou T, Yu S, Xu H, Liu H, Rao Y. Stimulating fungal cell wall integrity by exogenous β-glucanase to improve the production of fungal natural products. Appl Microbiol Biotechnol 2022; 106:7491-7503. [PMID: 36239763 DOI: 10.1007/s00253-022-12224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022]
Abstract
The low production of natural products (NPs) is still the critical restrictive factor in exploiting their potential large-scale applications and a barrier to isolating and identifying other meaningful products. Given that the stimulation of cell wall integrity (CWI) has become a novel strategy to modulate the production of microbial natural products, herein, exogenous β-glucanase treatment was developed as an external cell wall β-glucan stress to stimulate the fungal CWI, and then to improve the production of fungal NPs. It was found that the production of fungal NPs cercosporin and sophorolipids, biosynthesized by Cercospora sp. and Starmerella bombicola, respectively, was significantly improved by the treatment of β-glucanase under a controllable dose. Moreover, it demonstrated that β-glucanase had an ability to stimulate fungal CWI through slight fungal superficial damage, thus facilitating the secretion of NPs. We expected that this easy-operating method to stimulate fungal CWI could be feasible to improve more fungal NPs production. KEY POINTS: • Exogenous β-glucanase stimulated the fungal cell wall integrity • Changing fungal cell walls modulated natural product production • β-glucanase with potential universal effects on more fungal natural products.
Collapse
Affiliation(s)
- Tingan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shiyu Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Li N, Shan X, Zhou J, Yu S. Identification of key genes through the constructed CRISPR-dcas9 to facilitate the efficient production of O-acetylhomoserine in Corynebacterium glutamicum. Front Bioeng Biotechnol 2022; 10:978686. [PMID: 36185436 PMCID: PMC9515461 DOI: 10.3389/fbioe.2022.978686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
O-Acetylhomoserine (OAH) is an important platform chemical for the synthesis of L-methamidophos and l-methionine. It has been produced efficiently in Corynebacterium glutamicum. However, a wider range of key factors had not been identified, limiting further increases in OAH production. This study successfully identified some limiting factors and regulated them to improve OAH titer. Firstly, an efficient clustered regularly interspaced short palindromic repeats/dead CRISPR associated protein 9 (CRISPR-dCas9) system was constructed and used to identify the key genes in central metabolism and branch pathways associated with OAH biosynthesis. Then, the gltA gene involved in TCA cycle was identified as the most critical gene. A sequential promoter PNCgl2698, which showed different transcriptional intensity in different strain growth periods, was used to control the expression of gltA gene, resulting in OAH production of 7.0 g/L at 48 h. Finally, the OAH titer of the engineered strain reached 25.9 g/L at 72 h in a 5-L bioreactor. These results show that the identification and regulation of key genes are critical for OAH biosynthesis, which would provide a better research basis for the industrial production of OAH in C. glutamicum.
Collapse
Affiliation(s)
- Ning Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Shiqin Yu,
| |
Collapse
|