1
|
Shearer V, Yu CH, Han X, Sczepanski JT. The clinical potential of l-oligonucleotides: challenges and opportunities. Chem Sci 2024:d4sc05157b. [PMID: 39479156 PMCID: PMC11514577 DOI: 10.1039/d4sc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Chemically modified nucleotides are central to the development of biostable research tools and oligonucleotide therapeutics. In this context, l-oligonucleotides, the synthetic enantiomer of native d-nucleic acids, hold great promise. As enantiomers, l-oligonucleotides share the same physical and chemical properties as their native counterparts, yet their inverted l-(deoxy)ribose sugars afford them orthogonality towards the stereospecific environment of biology. Notably, l-oligonucleotides are highly resistant to degradation by cellular nucleases, providing them with superior biostability. As a result, l-oligonucleotides are being increasingly utilized for the development of diverse biomedical technologies, including molecular imaging tools, diagnostic biosensors, and aptamer-based therapeutics. Herein, we present recent such examples that highlight the clinical potential of l-oligonucleotides. Additionally, we provide our perspective on the remaining challenges and practical considerations currently associated with the use of l-oligonucleotides and explore potential solutions that will lead to the broader adoption of l-oligonucleotides in clinical applications.
Collapse
Affiliation(s)
- Victoria Shearer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xuan Han
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
2
|
Mallette TL, Lidke DS, Lakin MR. Heterochiral modifications enhance robustness and function of DNA in living human cells. Chembiochem 2024; 25:e202300755. [PMID: 38228506 PMCID: PMC10923132 DOI: 10.1002/cbic.202300755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Oligonucleotide therapeutics are becoming increasingly important as more are approved by the FDA, both for treatment and vaccination. Similarly, dynamic DNA nanotechnology is a promising technique that can be used to sense exogenous input molecules or endogenous biomarkers and integrate the results of multiple sensing reactions in situ via a programmed cascade of reactions. The combination of these two technologies could be highly impactful in biomedicine by enabling smart oligonucleotide therapeutics that can autonomously sense and respond to a disease state. A particular challenge, however, is the limited lifetime of standard nucleic acid components in living cells and organisms due to degradation by endogenous nucleases. In this work, we address this challenge by incorporating mirror-image, ʟ-DNA nucleotides to produce heterochiral "gapmers". We use dynamic DNA nanotechnology to show that these modifications keep the oligonucleotide intact in living human cells for longer than an unmodified strand. To this end, we used a sequential transfection protocol for delivering multiple nucleic acids into living human cells while providing enhanced confidence that subsequent interactions are actually occurring within the cells. Taken together, this work advances the state of the art of ʟ-nucleic acid protection of oligonucleotides and DNA circuitry for applications in vivo.
Collapse
Affiliation(s)
- Tracy L Mallette
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Diane S Lidke
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Matthew R Lakin
- Department of Computer Science, Department of Chemical & Biological Engineering, Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
3
|
Wu H, Lin J, Ling N, Zhang Y, He Y, Qiu L, Tan W. Functional Nucleic Acid-Based Immunomodulation for T Cell-Mediated Cancer Therapy. ACS NANO 2024; 18:119-135. [PMID: 38117770 DOI: 10.1021/acsnano.3c09861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
T cell-mediated immunity plays a pivotal role in cancer immunotherapy. The anticancer actions of T cells are coordinated by a sequence of biological processes, including the capture and presentation of antigens by antigen-presenting cells (APCs), the activation of T cells by APCs, and the subsequent killing of cancer cells by activated T cells. However, cancer cells have various means to evade immune responses. Meanwhile, these vulnerabilities provide potential targets for cancer treatments. Functional nucleic acids (FNAs) make up a class of synthetic nucleic acids with specific biological functions. With their diverse functionality, good biocompatibility, and high programmability, FNAs have attracted widespread interest in cancer immunotherapy. This Review focuses on recent research progress in employing FNAs as molecular tools for T cell-mediated cancer immunotherapy, including corresponding challenges and prospects.
Collapse
Affiliation(s)
- Hui Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Lin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|