Yoon C, Lee E, Kim D, Joung S, Kim Y, Jung H, Kim Y, Lee GM. SiMPl-GS: Advancing Cell Line Development via Synthetic Selection Marker for Next-Generation Biopharmaceutical Production.
ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024;
11:e2405593. [PMID:
39105414 PMCID:
PMC11481413 DOI:
10.1002/advs.202405593]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Rapid and efficient cell line development (CLD) process is essential to expedite therapeutic protein development. However, the performance of widely used glutamine-based selection systems is limited by low selection efficiency, stringency, and the inability to select multiple genes. Therefore, an AND-gate synthetic selection system is rationally designed using split intein-mediated protein ligation of glutamine synthetase (GS) (SiMPl-GS). Split sites of the GS are selected using a computational approach and validated with GS-knockout Chinese hamster ovary cells for their potential to enable cell survival in a glutamine-free medium. In CLD, SiMPl-GS outperforms the wild-type GS by selectively enriching high producers. Unlike wild-type GS, SiMPl-GS results in cell pools in which most cells produce high levels of therapeutic proteins. Harnessing orthogonal split intein pairs further enables the selection of four plasmids with a single selection, streamlining multispecific antibody-producing CLD. Taken together, SiMPl-GS is a simple yet effective means to expedite CLD for therapeutic protein production.
Collapse