1
|
Cabulong RB, Kafle SR, Singh A, Sharma M, Kim BS. Biological production of nicotinamide mononucleotide: a review. Crit Rev Biotechnol 2024:1-18. [PMID: 39675885 DOI: 10.1080/07388551.2024.2433993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 12/17/2024]
Abstract
Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: Escherichia coli, Bacillus subtilis, and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Saroj Raj Kafle
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Anju Singh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Kong L, Li X, Liu T, Yao Q, Qin J. Harnessing lactic acid bacteria for nicotinamide mononucleotide biosynthesis: a review of strategies and future directions. Front Microbiol 2024; 15:1492179. [PMID: 39735184 PMCID: PMC11681623 DOI: 10.3389/fmicb.2024.1492179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), one of the crucial precursors of nicotinamide adenine dinucleotide, has garnered considerable interest for its pharmacological and anti-aging effects, conferring potential health and economic benefits for humans. Lactic acid bacteria (LAB) are one of the most important probiotics, which is commonly used in the dairy industry. Due to its probiotic properties, it presents an attractive platform for food-grade NMN production. LAB have also been extensively utilized to enhance the functional properties of pharmaceuticals and cosmetics, making them promising candidates for large-scale up synthesis of NMN. This review provides an in-depth analysis of various metabolic engineering strategies, including enzyme optimization, pathway rewiring, and fermentation process enhancements, to increase NMN yields in LAB. It explores both CRISPR/Cas9 and traditional methods to manipulate key biosynthetic pathways. In particular, this study discussed future research directions, emphasizing the application of synthetic biology, systems biology, and AI-driven optimization to further enhance NMN production. It provides invaluable insights into developing scalable and industrially relevant processes for NMN production to meet the growing market demand.
Collapse
Affiliation(s)
- Linghui Kong
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Taiyu Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayang Qin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Li B, Meng X, Liu W. An overview of engineering microbial production of nicotinamide mononucleotide. J Biotechnol 2024; 396:80-88. [PMID: 39491727 DOI: 10.1016/j.jbiotec.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
As the human body gradually ages, the cellular level of NAD+ will decline, which has been found to be related to a variety of age-related diseases. As a precursor of NAD+, NMN is able to effectively promote the synthesis of NAD+ with no significant side effects. Microbial production of NMN holds the potential to lower the production cost and facilitate its wide application. In this review, based on the metabolic pathway of NAD+, we summarize recent advances of metabolic engineering strategies for NMN biosynthesis. An outlook for future optimization to improve NMN production is also discussed.
Collapse
Affiliation(s)
- Boting Li
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
4
|
Mao XA, Zhang P, Gong JS, Marshall GL, Su C, Qin ZQ, Li H, Xu GQ, Xu ZH, Shi JS. Protein Engineering of Nicotinamide Riboside Kinase Based on a Combinatorial Semirational Design Strategy for Efficient Biocatalytic Synthesis of Nicotinamide Mononucleotides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25210-25218. [PMID: 39481026 DOI: 10.1021/acs.jafc.4c05520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Industrial biosynthesis of β-nicotinamide mononucleotide (β-NMN) lacks a highly active nicotinamide riboside kinase for the phosphorylation process. Cumbersome preprocessing steps and excessive ATP addition contribute to its increased cost. To tackle these challenges, a docking combination simulation (DCS) semirational mutagenesis strategy was designed in this study, combining various modification strategies to obtain a mutant NRK-TRA with 2.9-fold higher enzyme activity. Molecular dynamics simulations and structural analysis demonstrate the enhancement of its structural stability. High-density fermentation was achieved through a 5 L fermentation tank, with a titer reaching 208.3 U/mL, the highest in the current report. An ATP-cycling whole-cell catalytic system was employed and optimized by introducing a polyphosphate kinase 2 (PPK2) recombinant strain, and 15.16 g/L β-NMN was obtained through a series of batch transformation experiments. This study provides a new strategy for the efficient screening of highly active enzyme variants and offers a green and promising biotransformation system for NMN production.
Collapse
Affiliation(s)
- Xin-An Mao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - George Luo Marshall
- Seragon Biosciences, Inc., 400 Spectrum Center Drive, 16th Floor, Irvine, California 92618, United States
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Zheng-Qiang Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Qiang Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| |
Collapse
|
5
|
Li Y, Wang X, Zhou NY, Ding J. Yeast surface display technology: Mechanisms, applications, and perspectives. Biotechnol Adv 2024; 76:108422. [PMID: 39117125 DOI: 10.1016/j.biotechadv.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Microbial cell surface display technology, which relies on genetically fusing heterologous target proteins to the cell wall through fusion with cell wall anchor proteins, has emerged as a promising and powerful method with diverse applications in biotechnology and biomedicine. Compared to classical intracellular or extracellular expression (secretion) systems, the cell surface display strategy stands out by eliminating the necessity for enzyme purification, overcoming substrate transport limitations, and demonstrating enhanced activity, stability, and selectivity. Unlike phage or bacterial surface display, the yeast surface display (YSD) system offers distinct advantages, including its large cell size, ease of culture and genetic manipulation, the use of generally regarded as safe (GRAS) host cell, the ability to ensure correct folding of complex eukaryotic proteins, and the potential for post-translational modifications. To date, YSD systems have found widespread applications in protein engineering, waste biorefineries, bioremediation, and the production of biocatalysts and biosensors. This review focuses on detailing various strategies and mechanisms for constructing YSD systems, providing a comprehensive overview of both fundamental principles and practical applications. Finally, the review outlines future perspectives for developing novel forms of YSD systems and explores potential applications in diverse fields.
Collapse
Affiliation(s)
- Yibo Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Xu Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
6
|
Zheng C, Li Y, Wu X, Gao L, Chen X. Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide. Nutrients 2024; 16:2354. [PMID: 39064797 PMCID: PMC11279976 DOI: 10.3390/nu16142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Chuxiong Zheng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Yumeng Li
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xin Wu
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Le Gao
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
7
|
Wang T, Yang WT, Gong YM, Zhang YK, Fan XX, Wang GC, Lu ZH, Liu F, Liu XH, Zhu YS. Molecular engineering of PETase for efficient PET biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116540. [PMID: 38833982 DOI: 10.1016/j.ecoenv.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 μM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 μM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Wen-Tao Yang
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-Ming Gong
- School of Biological Science, Jining Medical University, Jining, China
| | - Ying-Kang Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-Xin Fan
- School of Biological Science, Jining Medical University, Jining, China
| | - Guo-Cheng Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-Hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - You-Shuang Zhu
- School of Biological Science, Jining Medical University, Jining, China.
| |
Collapse
|
8
|
Li J, Shen J, Hou T, Tang H, Zeng C, Xiao K, Hou Y, Wang B. A Self-Assembled MOF-Escherichia Coli Hybrid System for Light-Driven Fuels and Valuable Chemicals Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308597. [PMID: 38664984 PMCID: PMC11220693 DOI: 10.1002/advs.202308597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/25/2024] [Indexed: 07/04/2024]
Abstract
The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light-driven hydrogen and lysine production. These results demonstrate that the light-irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L-1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN-222 efficiently captures light and facilitates the transfer of photo-generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN-222. This study establishes a crucial foundation for future research into the light-driven biomanufacturing using E. coli-based hybrid systems.
Collapse
Affiliation(s)
- Jialu Li
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Tianfeng Hou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Kemeng Xiao
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Department of Chemistry and Center for Cell and Developmental BiologyThe Chinese University of Hong KongShatinHong Kong999077China
| | - Yanping Hou
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
9
|
Tan Z, Yang Y, Wu Y, Yan J, Zhang B, Hou Y, Jia S. Biosynthesis of β-nicotinamide mononucleotide from glucose via a new pathway in Bacillus subtilis. Front Microbiol 2024; 15:1405736. [PMID: 38919503 PMCID: PMC11197623 DOI: 10.3389/fmicb.2024.1405736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction β-nicotinamide mononucleotide (β-NMN) is an essential precursor of nicotinamide adenine dinucleotide (NAD+) and plays a key role in supplying NAD+ and maintaining its levels. Existing methods for NMN production have some limitations, including low substrate availability, complex synthetic routes, and low synthetic efficiency, which result in low titers and high costs. Methods We constructed high-titer, genetically engineered strains that produce NMN through a new pathway. Bacillus subtilis WB600 was used as a safe chassis strain. Multiple strains overexpressing NadE, PncB, and PnuC in various combinations were constructed, and NMN titers of different strains were compared via shake-flask culture. Results The results revealed that the strain B. subtilis PncB1-PnuC exhibited the highest total and extracellular NMN titers. Subsequently, the engineered strains were cultured in a 5-L fermenter using batch and fed-batch fermentation. B. subtilis PncB1-PnuC achieved an NMN titer of 3,398 mg/L via fed-batch fermentation and glucose supplementation, which was 30.72% higher than that achieved via batch fermentation. Discussion This study provides a safe and economical approach for producing NMN on an industrial scale.
Collapse
Affiliation(s)
- Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Rahman SU, Qadeer A, Wu Z. Role and Potential Mechanisms of Nicotinamide Mononucleotide in Aging. Aging Dis 2024; 15:565-583. [PMID: 37548938 PMCID: PMC10917541 DOI: 10.14336/ad.2023.0519-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 08/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) has recently attracted much attention due to its role in aging and lifespan extension. NAD+ directly and indirectly affects many cellular processes, including metabolic pathways, DNA repair, and immune cell activities. These mechanisms are critical for maintaining cellular homeostasis. However, the decline in NAD+ levels with aging impairs tissue function, which has been associated with several age-related diseases. In fact, the aging population has been steadily increasing worldwide, and it is important to restore NAD+ levels and reverse or delay these age-related disorders. Therefore, there is an increasing demand for healthy products that can mitigate aging, extend lifespan, and halt age-related consequences. In this case, several studies in humans and animals have targeted NAD+ metabolism with NAD+ intermediates. Among them, nicotinamide mononucleotide (NMN), a precursor in the biosynthesis of NAD+, has recently received much attention from the scientific community for its anti-aging properties. In model organisms, ingestion of NMN has been shown to improve age-related diseases and probably delay death. Here, we review aspects of NMN biosynthesis and the mechanism of its absorption, as well as potential anti-aging mechanisms of NMN, including recent preclinical and clinical tests, adverse effects, limitations, and perceived challenges.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Abdul Qadeer
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Wang H, Cai P, Yu X, Li S, Zhu W, Liu Y, Wang D. Bioinformatics identifies key genes and potential drugs for energy metabolism disorders in heart failure with dilated cardiomyopathy. Front Pharmacol 2024; 15:1367848. [PMID: 38510644 PMCID: PMC10952830 DOI: 10.3389/fphar.2024.1367848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Dysfunction in myocardial energy metabolism plays a vital role in the pathological process of Dilated Cardiomyopathy (DCM). However, the precise mechanisms remain unclear. This study aims to investigate the key molecular mechanisms of energy metabolism and potential therapeutic agents in the progression of dilated cardiomyopathy with heart failure. Methods: Gene expression profiles and clinical data for patients with dilated cardiomyopathy complicated by heart failure, as well as healthy controls, were sourced from the Gene Expression Omnibus (GEO) database. Gene sets associated with energy metabolism were downloaded from the Molecular Signatures Database (MSigDB) for subsequent analysis. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis were employed to identify key modules and genes related to heart failure. Potential biological mechanisms were investigated through Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the construction of a competing endogenous RNA (ceRNA) network. Molecular docking simulations were then conducted to explore the binding affinity and conformation of potential therapeutic drugs with hub genes. Results: Analysis of the left ventricular tissue expression profiles revealed that, compared to healthy controls, patients with dilated cardiomyopathy exhibited 234 differentially expressed genes and 2 genes related to myocardial energy metabolism. Additionally, Benzoylaconine may serve as a potential therapeutic agent for the treatment of dilated cardiomyopathy. Conclusion: The study findings highlight the crucial role of myocardial energy metabolism in the progression of Dilated Cardiomyopathy. Notably, Benzoylaconine emerges as a potential candidate for treating Dilated Cardiomyopathy, potentially exerting its therapeutic effects by targeted modulation of myocardial energy metabolism through NRK and NT5.
Collapse
Affiliation(s)
- Haixia Wang
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Peifeng Cai
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xiaohan Yu
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Shiqi Li
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Wei Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
| | - Dawei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Cheng F, Li KX, Wu SS, Liu HY, Li H, Shen Q, Xue YP, Zheng YG. Biosynthesis of Nicotinamide Mononucleotide: Synthesis Method, Enzyme, and Biocatalytic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3302-3313. [PMID: 38330904 DOI: 10.1021/acs.jafc.3c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nicotinamide mononucleotide (NMN) has garnered substantial interest as a functional food product. Industrial NMN production relies on chemical methods, facing challenges in separation, purification, and regulatory complexities, leading to elevated prices. In contrast, NMN biosynthesis through fermentation or enzyme catalysis offers notable benefits like eco-friendliness, recyclability, and efficiency, positioning it as a primary avenue for future NMN synthesis. Enzymatic NMN synthesis encompasses the nicotinamide-initial route and nicotinamide ribose-initial routes. Key among these is nicotinamide riboside kinase (NRK), pivotal in the latter route. The NRK-mediated biosynthesis is emerging as a prominent trend due to its streamlined route, simplicity, and precise specificity. The essential aspect is to obtain an engineered NRK that exhibits elevated activity and robust stability. This review comprehensively assesses diverse NMN synthesis methods, offering valuable insights into efficient, sustainable, and economical production routes. It spotlights the emerging NRK-mediated biosynthesis pathway and its significance. The establishment of an adenosine triphosphate (ATP) regeneration system plays a pivotal role in enhancing NMN synthesis efficiency through NRK-catalyzed routes. The review aims to be a reference for researchers developing green and sustainable NMN synthesis, as well as those optimizing NMN production.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ke-Xin Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Shan-Shan Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hai-Yun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Huan Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
13
|
Song M, Yin C, Xu Q, Liu Y, Zhang H, Liu X, Yan H. Enhanced Production of β-Nicotinamide Mononucleotide with Exogenous Nicotinamide Addition in Saccharomyces boulardii-YS01. Foods 2023; 12:2897. [PMID: 37569166 PMCID: PMC10418623 DOI: 10.3390/foods12152897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
β-Nicotinamide mononucleotide (NMN), as a key precursor of an essential coenzyme nicotinamide adenine dinucleotide (NAD+), is most recognized for its pathological treatment effects and anti-aging functions. Here, the biosynthesis of NMN from the inexpensive feedstock substrate nicotinamide (Nam) using previously isolated Saccharomyces boulardii-YS01 was investigated. Ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UPLC-ESI-QqQ-MS/MS) was established for the determination and targeted analysis of NMN, nicotinamide riboside (NR), nicotinic acid (NA), Nam, and NAD+ in YS01 cells. Satisfactory precision and accuracy values were achieved with recoveries above 70% for five analytes. A 5~100 times higher content of NMN in YS01 (0.24~103.40 mg/kg) than in some common foods (0.0~18.8 mg/kg) was found. Combined with genome sequencing and enzyme function annotation, target-acting enzymes, including nudC, ISN1, URH1, PNP, and SIR2, were identified, and the biosynthetic pathway of NMN via Nam was suggested. The initial addition of 3 g/L Nam in the culture medium effectively promoted the generation of NMN, which raised the content of NMN by 39%. This work supplements an alternative resource for NMN production and lays the theoretical foundation for the further construction of NMN transgenic synthesis hosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.S.); (C.Y.); (Q.X.); (Y.L.); (H.Z.); (X.L.)
| |
Collapse
|
14
|
Liu Y, Gong JS, Marshall G, Su C, Shi JS, Xu ZH. Technology and functional insights into the nicotinamide mononucleotide for human health. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12612-2. [PMID: 37347262 DOI: 10.1007/s00253-023-12612-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Nicotinamide mononucleotide (NMN), a naturally occurring biologically active nucleotide, mainly functions via mediating the biosynthesis of NAD+. In recent years, its excellent pharmacological activities including anti-aging, treating neurodegenerative diseases, and protecting the heart have attracted increasing attention from scholars and entrepreneurs for production of a wide range of formulations, including functional food ingredients, health care products, active pharmaceuticals, and pharmaceutical intermediates. Presently, the synthesis methods of NMN mainly include two categories: chemical synthesis and biosynthesis. With the development of biocatalyst engineering and synthetic biology strategies, bio-preparation has proven to be efficient, economical, and sustainable methods. This review summarizes the chemical synthesis and biosynthetic pathways of NMN and provides an in-depth investigation on the mining and modification of enzyme resources during NMN biosynthesis, as well as the screening of hosts and optimization of chassis cells via metabolic engineering, which provide effective strategies for efficient production of NMN. In addition, an overview of the significant physiological functions and activities of NMN is elaborated. Finally, future research on technical approaches to further enhance NMN synthesis and strengthen clinical studies of NMN are prospected, which would lay the foundation for further promoting the application of NMN in nutrition, healthy food, and medicine in the future. KEY POINTS: • NMN supplementation effectively increases the level of NAD+. • The chemical and biological synthesis of NMN are comprehensively reviewed. • The impact of NMN on the treatment of various diseases is summarized.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, 214200, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - George Marshall
- Seragon Biosciences, Inc., 400 Spectrum Center Drive, 16th Floor, Irvine, CA, 92618, USA
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, 214200, People's Republic of China
| |
Collapse
|