1
|
Bai S, Luo H, Tong H, Wu Y, Yuan Y. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnol Adv 2024; 76:108421. [PMID: 39127411 DOI: 10.1016/j.biotechadv.2024.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China. @tju.edu.cn
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Ipoutcha T, Racharaks R, Huttelmaier S, Wilson CJ, Ozer EA, Hartmann EM. A synthetic biology approach to assemble and reboot clinically relevant Pseudomonas aeruginosa tailed phages. Microbiol Spectr 2024; 12:e0289723. [PMID: 38294230 PMCID: PMC10913387 DOI: 10.1128/spectrum.02897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
The rise in the frequency of antibiotic resistance has made bacterial infections, specifically Pseudomonas aeruginosa, a cause for greater concern. Phage therapy is a promising solution that uses naturally isolated phages to treat bacterial infections. Ecological limitations, which stipulate a discrete host range and the inevitable evolution of resistance, may be overcome through a better understanding of phage biology and the utilization of engineered phages. In this study, we developed a synthetic biology approach to construct tailed phages that naturally target clinically relevant strains of Pseudomonas aeruginosa. As proof of concept, we successfully cloned and assembled the JG024 and DMS3 phage genomes in yeast using transformation-associated recombination cloning and rebooted these two phage genomes in two different strains of P. aeruginosa. We identified factors that affected phage reboot efficiency like the phage species or the presence of antiviral defense systems in the bacterial strain. We have successfully extended this method to two other phage species and observed that the method enables the reboot of phages that are naturally unable to infect the strain used for reboot. This research represents a critical step toward the construction of clinically relevant, engineered P. aeruginosa phages.IMPORTANCEPseudomonas aeruginosa is a bacterium responsible for severe infections and a common major complication in cystic fibrosis. The use of antibiotics to treat bacterial infections has become increasingly difficult as antibiotic resistance has become more prevalent. Phage therapy is an alternative solution that is already being used in some European countries, but its use is limited by the narrow host range due to the phage receptor specificity, the presence of antiviral defense systems in the bacterial strain, and the possible emergence of phage resistance. In this study, we demonstrate the use of a synthetic biology approach to construct and reboot clinically relevant P. aeruginosa tailed phages. This method enables a significant expansion of possibilities through the construction of engineered phages for therapy applications.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Ratanachat Racharaks
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cole J. Wilson
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Gourgues G, Manso-Silván L, Chamberland C, Sirand-Pugnet P, Thiaucourt F, Blanchard A, Baby V, Lartigue C. A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001423. [PMID: 38193814 PMCID: PMC10866025 DOI: 10.1099/mic.0.001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Mycoplasma capricolum subspecies capripneumoniae (Mccp) is the causative agent of contagious caprine pleuropneumonia (CCPP), a devastating disease listed by the World Organisation for Animal Health (WOAH) as a notifiable disease and threatening goat production in Africa and Asia. Although a few commercial inactivated vaccines are available, they do not comply with WOAH standards and there are serious doubts regarding their efficacy. One of the limiting factors to comprehend the molecular pathogenesis of CCPP and develop improved vaccines has been the lack of tools for Mccp genome engineering. In this work, key synthetic biology techniques recently developed for closely related mycoplasmas were adapted to Mccp. CReasPy-Cloning was used to simultaneously clone and engineer the Mccp genome in yeast, prior to whole-genome transplantation into M. capricolum subsp. capricolum recipient cells. This approach was used to knock out an S41 serine protease gene recently identified as a potential virulence factor, leading to the generation of the first site-specific Mccp mutants. The Cre-lox recombination system was then applied to remove all DNA sequences added during genome engineering. Finally, the resulting unmarked S41 serine protease mutants were validated by whole-genome sequencing and their non-caseinolytic phenotype was confirmed by casein digestion assay on milk agar. The synthetic biology tools that have been successfully implemented in Mccp allow the addition and removal of genes and other genetic features for the construction of seamless targeted mutants at ease, which will pave the way for both the identification of key pathogenicity determinants of Mccp and the rational design of novel, improved vaccines for the control of CCPP.
Collapse
Affiliation(s)
- Géraldine Gourgues
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Lucía Manso-Silván
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Catherine Chamberland
- Université de Sherbrooke, Département de biologie, Sherbrooke, Québec, J1K 2R1, Canada
| | | | - François Thiaucourt
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Alain Blanchard
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Vincent Baby
- Université de Montréal, Faculté de médecine vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Carole Lartigue
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| |
Collapse
|