1
|
Venado RE, Wilker J, Pankievicz VCS, Infante V, MacIntyre A, Wolf ESA, Vela S, Robbins F, Fernandes-Júnior PI, Vermerris W, Ané JM. Mucilage produced by aerial roots hosts diazotrophs that provide nitrogen in Sorghum bicolor. PLoS Biol 2025; 23:e3003037. [PMID: 40029899 DOI: 10.1371/journal.pbio.3003037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/10/2025] [Accepted: 01/24/2025] [Indexed: 03/12/2025] Open
Abstract
Sorghum (Sorghum bicolor) is an important food, feed, and fodder crop worldwide and is gaining popularity as an energy crop due to its high potential for biomass production. Some sorghum accessions develop many aerial roots and produce an abundant carbohydrate-rich mucilage after rain. This aerial root mucilage is similar to that observed in landraces of maize (Zea mays) from southern Mexico, which have been previously shown to host diazotrophs. In this study, we characterized the aerial root development of several sorghum accessions and the impact of humidity on this trait. We conducted a microbiome study of the aerial root mucilage of maize and sorghum and isolated numerous diazotrophs from field sorghum mucilage. We observed that the prevailing phyla in the mucilage were Pseudomonadota, Bacteroidota, and Bacillota. However, bacterial abundances varied based on the genotype and the location. Using acetylene reduction, 15N2 gas feeding, and 15N isotope dilution assays, we confirmed that these sorghum accessions can acquire about 40% of their nitrogen from the atmosphere through these associations on aerial roots. Nitrogen fixation in sorghum aerial root mucilage offers a promising avenue to reduce reliance on synthetic fertilizers and promote sustainable agricultural practices for food, feed, fodder, and bioenergy production.
Collapse
Affiliation(s)
- Rafael E Venado
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vânia C S Pankievicz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Fletcher Robbins
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paulo Ivan Fernandes-Júnior
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Embrapa Semiárido, Petrolina, Pernambuco, Brazil
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Venkataraman M, Infante V, Sabat G, Sanos-Giles K, Ané JM, Pfleger BF. A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize. ACS Synth Biol 2025; 14:206-215. [PMID: 39707987 PMCID: PMC11747777 DOI: 10.1021/acssynbio.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers. Unfortunately, the mechanisms by which microbes adhere and persist on plant roots are poorly understood, limiting their application. This study examined the membrane proteome shift upon adherence to roots in two bacteria of interest, Klebsiella variicola and Pseudomonas putida. From this surface proteome data, we identified a novel membrane protein from a nonlaboratory isolate of P. putida that increases binding to maize roots using unlabeled proteomics. When this protein was moved from the environmental isolate to a common lab strain (P. putida KT2440), we observed increased binding capabilities of P. putida KT2440 to both abiotic mimic surfaces and maize roots. We observed a similar increased binding capability to maize roots when the protein was heterologously expressed in K. variicola and Stutzerimonas stutzeri. With the discovery of this novel binding protein, we outline a strategy for harnessing natural selection and wild isolates to build more persistent strains of bacteria for field applications and plant growth promotion.
Collapse
Affiliation(s)
- Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Kai Sanos-Giles
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
- Department of Plant and Agroecosystem Sciences, University of Wisconsin – Madison, Madison, WI, USA 53705
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| |
Collapse
|
3
|
Zhao S, Su X, Xu C, Gao X, Lu S. Microbial adaptation and genetic modifications for enhanced remediation in low-permeability soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177916. [PMID: 39647202 DOI: 10.1016/j.scitotenv.2024.177916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Low-permeability soils, characterized by fine texture and high clay content, pose significant challenges to traditional soil remediation techniques due to limited hydraulic conductivity, restricted nutrient flow, and reduced oxygen availability. These unique properties enable low-permeability soils to function as natural barriers in environmental protection; however, they also trap contaminants, making traditional remediation efforts challenging. This review synthesizes current knowledge on microbial adaptation and genetic engineering approaches that enhance the effectiveness of bioremediation in such environments. Key microbial adaptations, including anaerobic metabolism, extracellular enzyme production, and stress response mechanisms, allow individual microbes to adapt in low-permeability soils. Additionally, community-level strategies like microhabitat creation, biofilm formation, and functional redundancy further support microbial resilience. Advancements in genetic engineering now enable the modification of microbial traits-such as soil adhesion, nutrient utilization, and stress tolerance-to enhance bioremediation efficacy. Synthetic biology techniques further allow for the design of tailored microbial consortia that work cooperatively to degrade contaminants in complex soil matrices. This review highlights the integration of microbial and genetic engineering strategies, offering a comprehensive overview that informs current practices and guides future research in low-permeability soil remediation.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xinjia Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chen Xu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xu Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Songyan Lu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
4
|
Van Voorhis AF, Sherbo RS. Creating a Genetic Toolbox for the Carbon-Fixing, Nitrogen-Fixing and Dehalogenating Bacterium Xanthobacter autotrophicus. ACS Synth Biol 2024; 13:3658-3667. [PMID: 39478282 PMCID: PMC11574943 DOI: 10.1021/acssynbio.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Xanthobacter autotrophicus is a metabolically flexible microorganism with two key features: (1) The organism has adapted to grow on a wide variety of carbon sources including CO2, methanol, formate, propylene, haloalkanes and haloacids; and (2) X. autotrophicus was the first chemoautotroph identified that could also simultaneously fix N2, meaning the organism can utilize CO2, N2, and H2 for growth. This metabolic flexibility has enabled use of X. autotrophicus for gas fixation, the creation of fertilizers and foods from gases, and the dehalogenation of environmental contaminants. Despite the wide variety of applications that have already been demonstrated for this organism, there are few genetic tools available to explore and exploit its metabolism. Here, we report a genetic toolbox for use in X. autotrophicus. We first identified suitable origins of replication and quantified their copy number, and identified antibiotic resistance cassettes that could be used as selectable markers. We then tested several constitutive and inducible promoters and terminators and quantified their promoter strengths and termination efficiencies. Finally, we demonstrated that gene expression tools remain effective under both autotrophic and dehalogenative metabolic conditions to show that these tools can be used in the environments that make X. autotrophicus unique. Our extensive characterization of these tools in X. autotrophicus will enable genetic and metabolic engineering to optimize production of fertilizers and foods from gases, and enable bioremediation of halogenated environmental contaminants.
Collapse
Affiliation(s)
- Alexa F Van Voorhis
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rebecca S Sherbo
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R. Community standards and future opportunities for synthetic communities in plant-microbiota research. Nat Microbiol 2024; 9:2774-2784. [PMID: 39478084 DOI: 10.1038/s41564-024-01833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Collapse
Affiliation(s)
- Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marta Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ákos T Kovács
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dorota M Krzyżanowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Lars Jelsbak
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Wippel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jessica A Ferrarezi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Malek Marian
- Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Adele Pioppi
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tonni Andersen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | | | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
6
|
Hägele L, Pfleger BF, Takors R. Getting the Right Clones in an Automated Manner: An Alternative to Sophisticated Colony-Picking Robotics. Bioengineering (Basel) 2024; 11:892. [PMID: 39329634 PMCID: PMC11429294 DOI: 10.3390/bioengineering11090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
In recent years, the design-build-test-learn (DBTL) cycle has become a key concept in strain engineering. Modern biofoundries enable automated DBTL cycling using robotic devices. However, both highly automated facilities and semi-automated facilities encounter bottlenecks in clone selection and screening. While fully automated biofoundries can take advantage of expensive commercially available colony pickers, semi-automated facilities have to fall back on affordable alternatives. Therefore, our clone selection method is particularly well-suited for academic settings, requiring only the basic infrastructure of a biofoundry. The automated liquid clone selection (ALCS) method represents a straightforward approach for clone selection. Similar to sophisticated colony-picking robots, the ALCS approach aims to achieve high selectivity. Investigating the time analogue of five generations, the model-based set-up reached a selectivity of 98 ± 0.2% for correctly transformed cells. Moreover, the method is robust to variations in cell numbers at the start of ALCS. Beside Escherichia coli, promising chassis organisms, such as Pseudomonas putida and Corynebacterium glutamicum, were successfully applied. In all cases, ALCS enables the immediate use of the selected strains in follow-up applications. In essence, our ALCS approach provides a 'low-tech' method to be implemented in biofoundry settings without requiring additional devices.
Collapse
Affiliation(s)
- Lorena Hägele
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Glockow T, Kaster AK, Rabe KS, Niemeyer CM. Sustainable agriculture: leveraging microorganisms for a circular economy. Appl Microbiol Biotechnol 2024; 108:452. [PMID: 39212740 PMCID: PMC11364797 DOI: 10.1007/s00253-024-13294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms serve as linchpins in agricultural systems. Classic examples include microbial composting for nutrient recovery, using microorganisms in biogas technology for agricultural waste utilization, and employing biofilters to reduce emissions from stables or improve water quality in aquaculture. This mini-review highlights the importance of microbiome analysis in understanding microbial diversity, dynamics, and functions, fostering innovations for a more sustainable agriculture. In this regard, customized microorganisms for soil improvement, replacements for harmful agrochemicals or antibiotics in animal husbandry, and (probiotic) additives in animal nutrition are already in or even beyond the testing phase for a large-scale conventional agriculture. Additionally, as climate change reduces arable land, new strategies based on closed-loop systems and controlled environment agriculture, emphasizing microbial techniques, are being developed for regional food production. These strategies aim to secure the future food supply and pave the way for a sustainable, resilient, and circular agricultural economy. KEY POINTS: • Microbial strategies facilitate the integration of multiple trophic levels, essential for cycling carbon, nitrogen, phosphorus, and micronutrients. • Exploring microorganisms in integrated biological systems is essential for developing practical agricultural solutions. • Technological progress makes sustainable closed-entity re-circulation systems possible, securing resilient future food production.
Collapse
Affiliation(s)
- Till Glockow
- Acheron GmbH, Auf Der Muggenburg 30, 28217, Bremen, Germany
| | - Anne-Kristin Kaster
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 5 (IBG-5), Biotechnology and Microbial Genetics, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
8
|
Russell SJ, Garcia AK, Kaçar B. A CRISPR interference system for engineering biological nitrogen fixation. mSystems 2024; 9:e0015524. [PMID: 38376168 PMCID: PMC10949490 DOI: 10.1128/msystems.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
A grand challenge for the next century is in facing a changing climate through bioengineering solutions. Biological nitrogen fixation, the globally consequential, nitrogenase-catalyzed reduction of atmospheric nitrogen to bioavailable ammonia, is a vital area of focus. Nitrogen fixation engineering relies upon extensive understanding of underlying genetics in microbial models, including the broadly utilized gammaproteobacterium, Azotobacter vinelandii (A. vinelandii). Here, we report the first CRISPR interference (CRISPRi) system for targeted gene silencing in A. vinelandii that integrates genomically via site-specific transposon insertion. We demonstrate that CRISPRi can repress transcription of an essential nitrogen fixation gene by ~60%. Further, we show that nitrogenase genes are suitably expressed from the transposon insertion site, indicating that CRISPRi and engineered nitrogen fixation genes can be co-integrated for combinatorial studies of gene expression and engineering. Our established CRISPRi system fills an important gap for engineering microbial nitrogen fixation for desired purposes.IMPORTANCEAll life on Earth requires nitrogen to survive. About 78% of the atmosphere alone is nitrogen, yet humans cannot use it directly. Instead, we obtain the nitrogen we need for our survival through the food we eat. For more than 100 years, a substantial portion of agricultural productivity has relied on industrial methods for nitrogen fertilizer synthesis, which consumes significant amounts of nonrenewable energy resources and exacerbates environmental degradation and human-induced climate change. Promising alternatives to these industrial methods rely on engineering the only biological pathway for generating bioaccessible nitrogen: microbial nitrogen fixation. Bioengineering strategies require an extensive understanding of underlying genetics in nitrogen-fixing microbes, but genetic tools for this critical goal remain lacking. The CRISPRi gene silencing system that we report, developed in the broadly utilized nitrogen-fixing bacterial model, Azotobacter vinelandii, is an important step toward elucidating the complexity of nitrogen fixation genetics and enabling their manipulation.
Collapse
Affiliation(s)
- Steven J. Russell
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda K. Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Mishra S, Perkovich PM, Mitchell WP, Venkataraman M, Pfleger BF. Expanding the synthetic biology toolbox of Cupriavidus necator for establishing fatty acid production. J Ind Microbiol Biotechnol 2024; 51:kuae008. [PMID: 38366943 PMCID: PMC10926325 DOI: 10.1093/jimb/kuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The Gram-negative betaproteobacterium Cupriavidus necator is a chemolithotroph that can convert carbon dioxide into biomass. Cupriavidus necator has been engineered to produce a variety of high-value chemicals in the past. However, there is still a lack of a well-characterized toolbox for gene expression and genome engineering. Development and optimization of biosynthetic pathways in metabolically engineered microorganisms necessitates control of gene expression via functional genetic elements such as promoters, ribosome binding sites (RBSs), and codon optimization. In this work, a set of inducible and constitutive promoters were validated and characterized in C. necator, and a library of RBSs was designed and tested to show a 50-fold range of expression for green fluorescent protein (gfp). The effect of codon optimization on gene expression in C. necator was studied by expressing gfp and mCherry genes with varied codon-adaptation indices and was validated by expressing codon-optimized variants of a C12-specific fatty acid thioesterase to produce dodecanoic acid. We discuss further hurdles that will need to be overcome for C. necator to be widely used for biosynthetic processes.
Collapse
Affiliation(s)
- Shivangi Mishra
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul M Perkovich
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | - Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Kulakowski S, Rivier A, Kuo R, Mengel S, Eng T. Development of modular expression across phylogenetically distinct diazotrophs. J Ind Microbiol Biotechnol 2024; 51:kuae033. [PMID: 39257030 PMCID: PMC11537724 DOI: 10.1093/jimb/kuae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications. However, despite the importance of diazotrophic bacteria, genetic tools are poorly developed in a limited number of species, in turn narrowing the crops and root microbiomes that can be targeted. Here, we report optimized protocols and plasmids to manipulate phylogenetically diverse diazotrophs with the goal of enabling synthetic biology and genetic engineering. Three broad-host-range plasmids can be used across multiple diazotrophs, with the identification of one specific plasmid (containing origin of replication RK2 and a kanamycin resistance marker) showing the highest degree of compatibility across bacteria tested. We then demonstrated modular expression by testing seven promoters and eleven ribosomal binding sites using proxy fluorescent proteins. Finally, we tested four small molecule inducible systems to report expression in three diazotrophs and demonstrated genome editing in Klebsiella michiganensis M5al. ONE-SENTENCE SUMMARY In this study, broad-host plasmids and synthetic genetic parts were leveraged to enable expression tools in a library of diazotrophic bacteria.
Collapse
Affiliation(s)
- Shawn Kulakowski
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Rivier
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rita Kuo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sonya Mengel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Jing J, Garbeva P, Raaijmakers JM, Medema MH. Strategies for tailoring functional microbial synthetic communities. THE ISME JOURNAL 2024; 18:wrae049. [PMID: 38537571 PMCID: PMC11008692 DOI: 10.1093/ismejo/wrae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Natural ecosystems harbor a huge reservoir of taxonomically diverse microbes that are important for plant growth and health. The vast diversity of soil microorganisms and their complex interactions make it challenging to pinpoint the main players important for the life support functions microbes can provide to plants, including enhanced tolerance to (a)biotic stress factors. Designing simplified microbial synthetic communities (SynComs) helps reduce this complexity to unravel the molecular and chemical basis and interplay of specific microbiome functions. While SynComs have been successfully employed to dissect microbial interactions or reproduce microbiome-associated phenotypes, the assembly and reconstitution of these communities have often been based on generic abundance patterns or taxonomic identities and co-occurrences but have only rarely been informed by functional traits. Here, we review recent studies on designing functional SynComs to reveal common principles and discuss multidimensional approaches for community design. We propose a strategy for tailoring the design of functional SynComs based on integration of high-throughput experimental assays with microbial strains and computational genomic analyses of their functional capabilities.
Collapse
Affiliation(s)
- Jiayi Jing
- Bioinformatics Group, Department of Plant Science, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Department of Plant Science, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|