1
|
Bhaskar H, Gidden Z, Virdi G, Kleinjan D, Rosser SJ, Gandhi S, Regan L, Horrocks MH. Super-resolution imaging of proteins inside live mammalian cells with mLIVE-PAINT. Protein Sci 2025; 34:e70008. [PMID: 39865341 PMCID: PMC11761688 DOI: 10.1002/pro.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025]
Abstract
Super-resolution microscopy has revolutionized biological imaging, enabling the visualization of structures at the nanometer length scale. Its application in live cells, however, has remained challenging. To address this, we adapted LIVE-PAINT, an approach we established in yeast, for application in live mammalian cells. Using the 101A/101B coiled-coil peptide pair as a peptide-based targeting system, we successfully demonstrate the super-resolution imaging of two distinct proteins in mammalian cells, one localized in the nucleus, and the second in the cytoplasm. This study highlights the versatility of LIVE-PAINT, suggesting its potential for live-cell super-resolution imaging across a range of protein targets in mammalian cells. We name the mammalian cell version of our original method mLIVE-PAINT.
Collapse
Affiliation(s)
- Haresh Bhaskar
- School of Biological SciencesThe University of EdinburghEdinburghUK
- IRR Chemistry Hub, Institute for Regeneration and RepairThe University of EdinburghEdinburghUK
| | - Zoe Gidden
- School of Biological SciencesThe University of EdinburghEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghUK
| | - Gurvir Virdi
- The Francis Crick InstituteLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Dirk‐Jan Kleinjan
- Centre for Engineering Biology, School of Biological SciencesThe University of EdinburghEdinburghUK
| | - Susan J. Rosser
- Centre for Engineering Biology, School of Biological SciencesThe University of EdinburghEdinburghUK
| | - Sonia Gandhi
- The Francis Crick InstituteLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Lynne Regan
- School of Biological SciencesThe University of EdinburghEdinburghUK
- Centre for Engineering Biology, School of Biological SciencesThe University of EdinburghEdinburghUK
| | - Mathew H. Horrocks
- IRR Chemistry Hub, Institute for Regeneration and RepairThe University of EdinburghEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghUK
| |
Collapse
|
2
|
Gabrielli J, Di Blasi R, Kontoravdi C, Ceroni F. Degradation bottlenecks and resource competition in transiently and stably engineered mammalian cells. Nat Commun 2025; 16:328. [PMID: 39746977 PMCID: PMC11696530 DOI: 10.1038/s41467-024-55311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Degradation tags, otherwise known as degrons, are portable sequences that can be used to alter protein stability. Here, we report that degron-tagged proteins compete for cellular degradation resources in engineered mammalian cells leading to coupling of the degradation rates of otherwise independently expressed proteins when constitutively targeted human degrons are adopted. We show the effect of this competition to be dependent on the context of the degrons. By considering different proteins, degron position and cellular hosts, we highlight how the impact of the degron on both degradation strength and resource coupling changes, with identification of orthogonal combinations. By adopting inducible bacterial and plant degrons we also highlight how controlled uncoupling of synthetic construct degradation from the native machinery can be achieved. We then build a genomically integrated capacity monitor tagged with different degrons and confirm resource competition between genomic and transiently expressed DNA constructs. This work expands the characterisation of resource competition in engineered mammalian cells to protein degradation also including integrated systems, providing a framework for the optimisation of heterologous expression systems to advance applications in fundamental and applied biological research.
Collapse
Affiliation(s)
- Jacopo Gabrielli
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
3
|
Vegh P, Chapman E, Gilmour C, Fragkoudis R. Modular DNA Construct Design for High-Throughput Golden Gate Assembly. Methods Mol Biol 2025; 2850:61-77. [PMID: 39363066 DOI: 10.1007/978-1-0716-4220-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate cloning enables the modular assembly of DNA parts into desired synthetic genetic constructs. The "one-pot" nature of Golden Gate reactions makes them particularly amenable to high-throughput automation, facilitating the generation of thousands of constructs in a massively parallel manner. One potential bottleneck in this process is the design of these constructs. There are multiple parameters that must be considered during the design of an assembly process, and the final design should also be checked and verified before implementation. Doing this by hand for large numbers of constructs is neither practical nor feasible and increases the likelihood of introducing potentially costly errors. In this chapter we describe a design workflow that utilizes bespoke computational tools to automate the key phases of the construct design process and perform sequence editing in batches.
Collapse
Affiliation(s)
- Peter Vegh
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Elliott Chapman
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Craig Gilmour
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
4
|
Scoville S, Chiasson DM. Assembling DNA Plasmids with the Multi-Kingdom (MK) Cloning System. Methods Mol Biol 2025; 2850:467-479. [PMID: 39363088 DOI: 10.1007/978-1-0716-4220-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The Golden Gate cloning technique is used to assemble DNA parts into higher-order assemblies. Individual parts containing compatible overhangs generated by type IIS restriction enzymes are joined together using DNA ligase. The technique enables users to assemble custom transcription units (TUs) for a wide array of experimental assays. Several Golden Gate cloning systems have been developed; however, they are typically used with a narrow range of organisms. Here we describe the Multi-Kingdom (MK) cloning system that allows users to generate DNA plasmids for use in a broad range of organisms.
Collapse
Affiliation(s)
- Sarina Scoville
- Department of Biology, Saint Mary's University, Halifax, Canada
| | - David M Chiasson
- Department of Biology, Saint Mary's University, Halifax, Canada.
| |
Collapse
|
5
|
Laborda-Mansilla J, García-Ruiz E. Advancements in Golden Gate Cloning: A Comprehensive Review. Methods Mol Biol 2025; 2850:481-500. [PMID: 39363089 DOI: 10.1007/978-1-0716-4220-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Researchers have dedicated efforts to refining genetic part assembly techniques, responding to the demand for complex DNA constructs. The optimization efforts, targeting enhanced efficiency, fidelity, and modularity, have yielded streamlined protocols. Among these, Golden Gate cloning has gained prominence, offering a modular and hierarchical approach for constructing complex DNA fragments. This method is instrumental in establishing a repository of reusable parts, effectively reducing the costs and proving highly valuable for high-throughput DNA assembly projects. In this review, we delve into the main protocol of Golden Gate cloning, providing refined insights to enhance protocols and address potential challenges. Additionally, we perform a thorough evaluation of the primary modular cloning toolkits adopted by the scientific community. The discussion includes an exploration of recent advances and challenges in the field, providing a comprehensive overview of the current state of Golden Gate cloning.
Collapse
Affiliation(s)
- Jesús Laborda-Mansilla
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid, Spain
| | - Eva García-Ruiz
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid, Spain.
| |
Collapse
|
6
|
Hughes AL, Steinmetz LM. Golden Gate Assembly of Transcriptional Unit Libraries into a Rearrangeable Gene Cluster. Methods Mol Biol 2025; 2850:387-416. [PMID: 39363084 DOI: 10.1007/978-1-0716-4220-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Both regulatory sequences and genome organization contribute to the production of diverse transcript isoforms, which can influence how genes, or sets of genes, are expressed. An efficient, modular approach is needed to generate the combinatorial complexity required to empirically test many combinations of different regulatory sequences and different gene orders. Golden Gate assembly provides such a tool for seamless one-pot cleavage and ligation, by using type IIS restriction enzymes, which cleave outside of their recognition site. In addition to reducing the number of steps, this one-pot reaction can improve correct assemblies by the continued cleavage of self-ligation products that retain the recognition site. Switching the specific restriction enzyme used between steps allows for modular assembly of several units. A protocol to perform modular assemblies with two type IIS restriction enzymes, namely BsaI-v2-HF and BsmBI-v2, is described here. This protocol includes a description for generating destination vectors that add loxPsym sites between transcriptional units, allowing for diversification of gene order, orientation, and spacing.
Collapse
Affiliation(s)
- Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Mallozzi A, Fusco V, Ragazzini F, di Bernardo D. A Biomolecular Circuit for Automatic Gene Regulation in Mammalian Cells with CRISPR Technology. ACS Synth Biol 2024; 13:3917-3925. [PMID: 39622625 DOI: 10.1021/acssynbio.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We introduce a biomolecular circuit for precise control of gene expression in mammalian cells. The circuit leverages the stochiometric interaction between the artificial transcription factor VPR-dCas9 and the anti-CRISPR protein AcrIIA4, enhanced with synthetic coiled-coil domains to boost their interaction, to maintain the expression of a reporter protein constant across diverse experimental conditions, including fluctuations in protein degradation rates and plasmid concentrations, by automatically adjusting its mRNA level. This capability, known as robust perfect adaptation (RPA), is crucial for the stable functioning of biological systems and has wide-ranging implications for biotechnological applications. This system belongs to a class of biomolecular circuits named antithetic integral controllers, and it can be easily adapted to regulate any endogenous transcription factor thanks to the versatility of the CRISPR-Cas system. Finally, we show that RPA also holds in cells genomically integrated with the circuit, thus paving the way for practical applications in biotechnology that require stable cell lines.
Collapse
Affiliation(s)
- Alessio Mallozzi
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Virginia Fusco
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80121 Naples, Italy
| | - Francesco Ragazzini
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School for Advanced Studies, Scuola Superiore Meridionale, 80138 Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Department of Chemical Materials and Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
8
|
Ferguson KM, Blin C, Garcia-Diaz C, Bulstrode H, Bardini Bressan R, McCarten K, Pollard SM. Modelling quiescence exit of neural stem cells reveals a FOXG1-FOXO6 axis. Dis Model Mech 2024; 17:dmm052005. [PMID: 39499086 PMCID: PMC11625887 DOI: 10.1242/dmm.052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The molecular mechanisms controlling the balance of quiescence and proliferation in adult neural stem cells (NSCs) are often deregulated in brain cancers such as glioblastoma multiforme (GBM). Previously, we reported that FOXG1, a forebrain-restricted neurodevelopmental transcription factor, is frequently upregulated in glioblastoma stem cells (GSCs) and limits the effects of cytostatic pathways, in part by repression of the tumour suppressor Foxo3. Here, we show that increased FOXG1 upregulates Foxo6, a more recently discovered FOXO family member with potential oncogenic functions. Although genetic ablation of Foxo6 in proliferating NSCs had no effect on the cell cycle or entry into quiescence, we found that Foxo6-null NSCs could no longer efficiently exit quiescence following FOXG1 elevation. Increased Foxo6 resulted in the formation of large acidic vacuoles, reminiscent of Pak1-regulated macropinocytosis. Consistently, Pak1 expression was upregulated by FOXG1 overexpression and downregulated upon FOXO6 loss in proliferative NSCs. These data suggest a pro-oncogenic role for FOXO6, downstream of GBM-associated elevated FOXG1, in controlling quiescence exit, and shed light on the potential functions of this underexplored FOXO family member.
Collapse
Affiliation(s)
- Kirsty M. Ferguson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Carla Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Claudia Garcia-Diaz
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Harry Bulstrode
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Katrina McCarten
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M. Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
9
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Chen HH, Zheng QX, Yu F, Xie SR, Jiang JG. Development of a chloroplast expression system for Dunaliella salina. Enzyme Microb Technol 2024; 179:110464. [PMID: 38850682 DOI: 10.1016/j.enzmictec.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Dunaliella salina is an innovative expression system due to its distinct advantages such as high salt tolerance, low susceptibility to contamination, and the absence of the cell wall. While nuclear transformation has been extensively studied, research on D. salina chloroplast transformation remains in the preliminary stages. In this study, we established an efficient chloroplast expression system for D. salina using Golden Gate assembly. We developed a D. salina toolkit comprising essential components such as chloroplast-specific promoters, terminators, homologous fragments, and various vectors. We confirmed its functionality by expressing the EGFP protein. Moreover, we detailed the methodology of the entire construction process. This expression system enables the specific targeting of foreign genes through simple homologous recombination, resulting in stable expression in chloroplasts. The toolkit achieved a relatively high transformation efficiency within a shorter experimental cycle. Consequently, the construction and utilization of this toolkit have the potential to enhance the efficiency of transgenic engineering in D. salina and advance the development of microalgal biofactories.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Qian-Xi Zheng
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Fan Yu
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Shan-Rong Xie
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Lebek T, Malaguti M, Boezio GL, Zoupi L, Briscoe J, Elfick A, Lowell S. PUFFFIN: an ultra-bright, customisable, single-plasmid system for labelling cell neighbourhoods. EMBO J 2024; 43:4110-4135. [PMID: 38997504 PMCID: PMC11405414 DOI: 10.1038/s44318-024-00154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Cell communication coordinates developmental processes, maintains homeostasis, and contributes to disease. Therefore, understanding the relationship between cells in a shared environment is crucial. Here we introduce Positive Ultra-bright Fluorescent Fusion For Identifying Neighbours (PUFFFIN), a cell neighbour-labelling system based upon secretion and uptake of positively supercharged fluorescent protein s36GFP. We fused s36GFP to mNeonGreen or to a HaloTag, facilitating ultra-bright, sensitive, colour-of-choice labelling. Secretor cells transfer PUFFFIN to neighbours while retaining nuclear mCherry, making identification, isolation, and investigation of live neighbours straightforward. PUFFFIN can be delivered to cells, tissues, or embryos on a customisable single-plasmid construct composed of interchangeable components with the option to incorporate any transgene. This versatility enables the manipulation of cell properties, while simultaneously labelling surrounding cells, in cell culture or in vivo. We use PUFFFIN to ask whether pluripotent cells adjust the pace of differentiation to synchronise with their neighbours during exit from naïve pluripotency. PUFFFIN offers a simple, sensitive, customisable approach to profile non-cell-autonomous responses to natural or induced changes in cell identity or behaviour.
Collapse
Affiliation(s)
- Tamina Lebek
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK
| | | | - Lida Zoupi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH8 3DW, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
12
|
O'Connor E, Micklefield J, Cai Y. Searching for the optimal microbial factory: high-throughput biosensors and analytical techniques for screening small molecules. Curr Opin Biotechnol 2024; 87:103125. [PMID: 38547587 DOI: 10.1016/j.copbio.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/09/2024]
Abstract
High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.
Collapse
Affiliation(s)
- Eloise O'Connor
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
13
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590027. [PMID: 38659940 PMCID: PMC11042376 DOI: 10.1101/2024.04.18.590027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
14
|
Vegh P, Donovan S, Rosser S, Stracquadanio G, Fragkoudis R. Biofoundry-Scale DNA Assembly Validation Using Cost-Effective High-Throughput Long-Read Sequencing. ACS Synth Biol 2024; 13:683-686. [PMID: 38329009 PMCID: PMC10877595 DOI: 10.1021/acssynbio.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Biofoundries are automated high-throughput facilities specializing in the design, construction, and testing of engineered/synthetic DNA constructs (plasmids), often from genetic parts. A critical step of this process is assessing the fidelity of the assembled DNA construct to the desired design. Current methods utilized for this purpose are restriction digest or PCR followed by fragment analysis and sequencing. The Edinburgh Genome Foundry (EGF) has recently established a single-molecule sequencing quality control step using the Oxford Nanopore sequencing technology, along with a companion Nextflow pipeline and a Python package, to perform in-depth analysis and generate a detailed report. Our software enables researchers working with plasmids, including biofoundry scientists, to rapidly analyze and interpret sequencing data. In conclusion, we have created a laboratory and software protocol that validates assembled, cloned, or edited plasmids, using Nanopore long-reads, which can serve as a useful resource for the genetics, synthetic biology, and sequencing communities.
Collapse
Affiliation(s)
- Peter Vegh
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Sophie Donovan
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Susan Rosser
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Giovanni Stracquadanio
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Rennos Fragkoudis
- Edinburgh
Genome Foundry, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
- Department
of Biochemistry and Biotechnology, University
of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
15
|
Grob A, Enrico Bena C, Di Blasi R, Pessina D, Sood M, Yunyue Z, Bosia C, Isalan M, Ceroni F. Mammalian cell growth characterisation by a non-invasive plate reader assay. Nat Commun 2024; 15:57. [PMID: 38167870 PMCID: PMC10761699 DOI: 10.1038/s41467-023-44396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Automated and non-invasive mammalian cell analysis is currently lagging behind due to a lack of methods suitable for a variety of cell lines and applications. Here, we report the development of a high throughput non-invasive method for tracking mammalian cell growth and performance based on plate reader measurements. We show the method to be suitable for both suspension and adhesion cell lines, and we demonstrate it can be adopted when cells are grown under different environmental conditions. We establish that the method is suitable to inform on effective drug treatments to be used depending on the cell line considered, and that it can support characterisation of engineered mammalian cells over time. This work provides the scientific community with an innovative approach to mammalian cell screening, also contributing to the current efforts towards high throughput and automated mammalian cell engineering.
Collapse
Affiliation(s)
- Alice Grob
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Chiara Enrico Bena
- Italian Institute for Genomic Medicine, Torino, Italy
- Université Paris-Saclay (INRAE), AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Daniele Pessina
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Matthew Sood
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Zhou Yunyue
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Carla Bosia
- Italian Institute for Genomic Medicine, Torino, Italy.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
16
|
Weber E. Setup and Applications of Modular Protein Expression Toolboxes (MoPET) for Mammalian Systems. Methods Mol Biol 2024; 2774:15-29. [PMID: 38441755 DOI: 10.1007/978-1-0716-3718-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The design and generation of an optimal protein expression construct is the first and essential step in the characterization of any protein of interest. However, the exchange and modification of the coding and/or noncoding elements to analyze their effect on protein function or generating the optimal result can be a tedious and time-consuming process using standard molecular biology cloning methods. To streamline the process to generate defined expression constructs or libraries of otherwise difficult to express proteins, the Modular Protein Expression Toolbox (MoPET) has been developed (Weber E, PloS One 12(5):e0176314, 2017). The system applies Golden Gate cloning as an assembly method and follows the standardized modular cloning (MoClo) principle (Weber E, PloS One 6(2):e16765, 2011). This cloning platform allows highly efficient DNA assembly of pre-defined, standardized functional DNA modules effecting protein expression with a focus on minimizing the cloning burden in coding regions. The original MoPET system consists of 53 defined DNA modules divided into eight functional main classes and can be flexibly expanded dependent on the need of the experimenter and expression host. However, already with a limited set of only 53 modules, 792,000 different constructs can be rationally designed or used to generate combinatorial expression optimization libraries. We provide here a detailed protocol for the (1) design and generation of level 0 basic parts, (2) generation of defined expressions constructs, and (3) generation of combinatorial expression libraries.
Collapse
Affiliation(s)
- Ernst Weber
- Molecular Design & Engineering, Biologics Research, Bayer AG, Wuppertal, Germany.
| |
Collapse
|
17
|
Blázquez B, León DS, Torres-Bacete J, Gómez-Luengo Á, Kniewel R, Martínez I, Sordon S, Wilczak A, Salgado S, Huszcza E, Popłoński J, Prieto A, Nogales J. Golden Standard: a complete standard, portable, and interoperative MoClo tool for model and non-model proteobacteria. Nucleic Acids Res 2023; 51:e98. [PMID: 37718823 PMCID: PMC10602866 DOI: 10.1093/nar/gkad758] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Modular cloning has become a benchmark technology in synthetic biology. However, a notable disparity exists between its remarkable development and the need for standardization to facilitate seamless interoperability among systems. The field is thus impeded by an overwhelming proliferation of organism-specific systems that frequently lack compatibility. To overcome these issues, we present Golden Standard (GS), a Type IIS assembly method underpinned by the Standard European Vector Architecture. GS unlocks modular cloning applications for most bacteria, and delivers combinatorial multi-part assembly to create genetic circuits of up to twenty transcription units (TUs). Reliance on MoClo syntax renders GS fully compatible with many existing tools and it sets the path towards efficient reusability of available part libraries and assembled TUs. GS was validated in terms of DNA assembly, portability, interoperability and phenotype engineering in α-, β-, γ- and δ-proteobacteria. Furthermore, we provide a computational pipeline for parts characterization that was used to assess the performance of GS parts. To promote community-driven development of GS, we provide a dedicated web-portal including a repository of parts, vectors, and Wizard and Setup tools that guide users in designing constructs. Overall, GS establishes an open, standardized framework propelling the progress of synthetic biology as a whole.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Álvaro Gómez-Luengo
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Ryan Kniewel
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Igor Martínez
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Sandra Sordon
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Aleksandra Wilczak
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Sergio Salgado
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Ewa Huszcza
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
18
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Di Blasi R, Pisani M, Tedeschi F, Marbiah MM, Polizzi K, Furini S, Siciliano V, Ceroni F. Resource-aware construct design in mammalian cells. Nat Commun 2023; 14:3576. [PMID: 37328476 PMCID: PMC10275982 DOI: 10.1038/s41467-023-39252-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Resource competition can be the cause of unintended coupling between co-expressed genetic constructs. Here we report the quantification of the resource load imposed by different mammalian genetic components and identify construct designs with increased performance and reduced resource footprint. We use these to generate improved synthetic circuits and optimise the co-expression of transfected cassettes, shedding light on how this can be useful for bioproduction and biotherapeutic applications. This work provides the scientific community with a framework to consider resource demand when designing mammalian constructs to achieve robust and optimised gene expression.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Mara Pisani
- Synthetic and Systems Biology lab for Biomedicine, Instituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
- Open University affiliated centre, Milton Keynes, UK
| | - Fabiana Tedeschi
- Synthetic and Systems Biology lab for Biomedicine, Instituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
- University of Naples Federico II, Naples, Italy
| | - Masue M Marbiah
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Simone Furini
- Department of Electrical, Electronic and Information Engineering ″Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Velia Siciliano
- Synthetic and Systems Biology lab for Biomedicine, Instituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
20
|
Mumm C, Drexel ML, McDonald TL, Diehl AG, Switzenberg JA, Boyle AP. Multiplexed long-read plasmid validation and analysis using OnRamp. Genome Res 2023; 33:741-749. [PMID: 37156622 PMCID: PMC10317119 DOI: 10.1101/gr.277369.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Recombinant plasmid vectors are versatile tools that have facilitated discoveries in molecular biology, genetics, proteomics, and many other fields. As the enzymatic and bacterial processes used to create recombinant DNA can introduce errors, sequence validation is an essential step in plasmid assembly. Sanger sequencing is the current standard for plasmid validation; however, this method is limited by an inability to sequence through complex secondary structure and lacks scalability when applied to full-plasmid sequencing of multiple plasmids owing to read-length limits. Although high-throughput sequencing does provide full-plasmid sequencing at scale, it is impractical and costly when used outside of library-scale validation. Here, we present Oxford nanopore-based rapid analysis of multiplexed plasmids (OnRamp), an alternative method for routine plasmid validation that combines the advantages of high-throughput sequencing's full-plasmid coverage and scalability with Sanger's affordability and accessibility by leveraging nanopore's long-read sequencing technology. We include customized wet-laboratory protocols for plasmid preparation along with a pipeline designed for analysis of read data obtained using these protocols. This analysis pipeline is deployed on the OnRamp web app, which generates alignments between actual and predicted plasmid sequences, quality scores, and read-level views. OnRamp is designed to be broadly accessible regardless of programming experience to facilitate more widespread adoption of long-read sequencing for routine plasmid validation. Here we describe the OnRamp protocols and pipeline and show our ability to obtain full sequences from pooled plasmids while detecting sequence variation even in regions of high secondary structure at less than half the cost of equivalent Sanger sequencing.
Collapse
Affiliation(s)
- Camille Mumm
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Melissa L Drexel
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Torrin L McDonald
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Adam G Diehl
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
21
|
Bird J, Marles-Wright J, Giachino A. A User's Guide to Golden Gate Cloning Methods and Standards. ACS Synth Biol 2022; 11:3551-3563. [PMID: 36322003 PMCID: PMC9680027 DOI: 10.1021/acssynbio.2c00355] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/06/2022]
Abstract
The continual demand for specialized molecular cloning techniques that suit a broad range of applications has driven the development of many different cloning strategies. One method that has gained significant traction is Golden Gate assembly, which achieves hierarchical assembly of DNA parts by utilizing Type IIS restriction enzymes to produce user-specified sticky ends on cut DNA fragments. This technique has been modularized and standardized, and includes different subfamilies of methods, the most widely adopted of which are the MoClo and Golden Braid standards. Moreover, specialized toolboxes tailored to specific applications or organisms are also available. Still, the quantity and range of assembly methods can constitute a barrier to adoption for new users, and even experienced scientists might find it difficult to discern which tools are best suited toward their goals. In this review, we provide a beginner-friendly guide to Golden Gate assembly, compare the different available standards, and detail the specific features and quirks of commonly used toolboxes. We also provide an update on the state-of-the-art in Golden Gate technology, discussing recent advances and challenges to inform existing users and promote standard practices.
Collapse
Affiliation(s)
- Jasmine
E. Bird
- School
of Computing, Faculty of Science Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Jon Marles-Wright
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Andrea Giachino
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
- School
of Science, Engineering & Environment, University of Salford, Salford, M5 4NT, United Kingdom
| |
Collapse
|
22
|
Glykofrydis F, Elfick A. Exploring standards for multicellular mammalian synthetic biology. Trends Biotechnol 2022; 40:1299-1312. [PMID: 35803769 DOI: 10.1016/j.tibtech.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/21/2023]
Abstract
Synthetic biology is moving towards bioengineering multicellular mammalian systems that are poised to advance tissue engineering, biomedicine, and the food industry. Despite progress, the field lacks a framework of standards that could greatly accelerate further development. Here, we explore the landscape of standards for multicellular mammalian synthetic biology. We discuss the limits of current technical standards and categorise unaddressed parameters into an abstraction hierarchy. We then define the concept of a 'synthetic multicellular mammalian system' and apply our standard hierarchy framework to illustrate how it could aid bioengineering endeavours. We conclude with promising areas that could shape the future of the field, flagging the need for a critical and holistic consideration of standards that requires cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK.
| |
Collapse
|
23
|
Mózsik L, Iacovelli R, Bovenberg RAL, Driessen AJM. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Front Bioeng Biotechnol 2022; 10:901037. [PMID: 35910033 PMCID: PMC9335490 DOI: 10.3389/fbioe.2022.901037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are highly productive cell factories, many of which are industrial producers of enzymes, organic acids, and secondary metabolites. The increasing number of sequenced fungal genomes revealed a vast and unexplored biosynthetic potential in the form of transcriptionally silent secondary metabolite biosynthetic gene clusters (BGCs). Various strategies have been carried out to explore and mine this untapped source of bioactive molecules, and with the advent of synthetic biology, novel applications, and tools have been developed for filamentous fungi. Here we summarize approaches aiming for the expression of endogenous or exogenous natural product BGCs, including synthetic transcription factors, assembly of artificial transcription units, gene cluster refactoring, fungal shuttle vectors, and platform strains.
Collapse
Affiliation(s)
- László Mózsik
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, Delft, Netherlands
- Department of Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Öling D, Lan-Chow-Wing O, Martella A, Gilberto S, Chi J, Cooper E, Edström T, Peng B, Sumner D, Karlsson F, Volkov P, Webster CI, Roth R. FRAGLER: A Fragment Recycler Application Enabling Rapid and Scalable Modular DNA Assembly. ACS Synth Biol 2022; 11:2229-2237. [PMID: 35797032 DOI: 10.1021/acssynbio.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid and flexible plasmid construct generation at scale is one of the most limiting first steps in drug discovery projects. These hurdles can partly be overcome by adopting modular DNA design principles, automated sequence fragmentation, and plasmid assembly. To this end we have designed a robust, multimodule golden gate based cloning platform for construct generation with a wide range of applications. The assembly efficiency of the system was validated by splitting sfGFP and sfCherry3C cassettes and expressing them in E. coli followed by fluorometric assessment. To minimize timelines and cost for complex constructs, we developed a software tool named FRAGLER (FRAGment recycLER) that performs codon optimization, multiple sequence alignment, and automated generation of fragments for recycling. To highlight the flexibility and robustness of the platform, we (i) generated plasmids for SarsCoV2 protein reagents, (ii) automated and parallelized assemblies, and (iii) built modular libraries of chimeric antigen receptors (CARs) variants. Applying the new assembly framework, we have greatly streamlined plasmid construction and increased our capacity for rapid generation of complex plasmids.
Collapse
Affiliation(s)
- David Öling
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | | | - Andrea Martella
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Samuel Gilberto
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Jordi Chi
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Emily Cooper
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Tora Edström
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Bo Peng
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Dean Sumner
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Fredrik Karlsson
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Petr Volkov
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Carl I Webster
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Robert Roth
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| |
Collapse
|
25
|
Pryor JM, Potapov V, Bilotti K, Pokhrel N, Lohman GJS. Rapid 40 kb Genome Construction from 52 Parts through Data-optimized Assembly Design. ACS Synth Biol 2022; 11:2036-2042. [PMID: 35613368 PMCID: PMC9208013 DOI: 10.1021/acssynbio.1c00525] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Large DNA constructs
(>10 kb) are invaluable tools for genetic
engineering and the development of therapeutics. However, the manufacture
of these constructs is laborious, often involving multiple hierarchical
rounds of preparation. To address this problem, we sought to test
whether Golden Gate assembly (GGA), an in vitro DNA
assembly methodology, can be utilized to construct a large DNA target
from many tractable pieces in a single reaction. While GGA is routinely
used to generate constructs from 5 to 10 DNA parts in one step, we
found that optimization permitted the assembly of >50 DNA fragments
in a single round. We applied these insights to genome construction,
successfully assembling the 40 kb T7 bacteriophage genome from up
to 52 parts and recovering infectious phage particles after cellular
transformation. The assembly protocols and design principles described
here can be applied to rapidly engineer a wide variety of large and
complex assembly targets.
Collapse
Affiliation(s)
- John M. Pryor
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Katharina Bilotti
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Nilisha Pokhrel
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Gregory J. S. Lohman
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| |
Collapse
|
26
|
Luo Y, James JS, Jones S, Martella A, Cai Y. EMMA-CAD: Design Automation for Synthetic Mammalian Constructs. ACS Synth Biol 2022; 11:579-586. [PMID: 35050610 DOI: 10.1021/acssynbio.1c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Computational design tools are the cornerstone of synthetic biology and have underpinned its rapid development over the past two decades. As the field has matured, the scale of biological investigation has expanded dramatically, and researchers often must rely on computational tools to operate in the high-throughput investigational space. This is especially apparent in the modular design of DNA expression circuits, where complexity is accumulated rapidly. Alongside our automated pipeline for the high-throughput construction of Extensible Modular Mammalian Assembly (EMMA) expression vectors, we recognized the need for an integrated software solution for EMMA vector design. Here we present EMMA-CAD (https://emma.cailab.org), a powerful web-based computer-aided design tool for the rapid design of bespoke mammalian expression vectors. EMMA-CAD features a variety of functionalities, including a user-friendly design interface, automated connector selection underpinned by rigorous computer optimization algorithms, customization of part libraries, and personalized design spaces. Capable of translating vector assembly designs into human- and machine-readable protocols for vector construction, EMMA-CAD integrates seamlessly into our automated EMMA pipeline, hence completing an end-to-end design to production workflow.
Collapse
Affiliation(s)
- Yisha Luo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Joshua S. James
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, U.K
| | - Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
27
|
James JS, Jones S, Martella A, Luo Y, Fisher DI, Cai Y. Automation and Expansion of EMMA Assembly for Fast-Tracking Mammalian System Engineering. ACS Synth Biol 2022; 11:587-595. [PMID: 35061373 DOI: 10.1021/acssynbio.1c00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With applications from functional genomics to the production of therapeutic biologics, libraries of mammalian expression vectors have become a cornerstone of modern biological investigation and engineering. Multiple modular vector platforms facilitate the rapid design and assembly of vectors. However, such systems approach a technical bottleneck when a library of bespoke vectors is required. Utilizing the flexibility and robustness of the Extensible Mammalian Modular Assembly (EMMA) toolkit, we present an automated workflow for the library-scale design, assembly, and verification of mammalian expression vectors. Vector design is simplified using our EMMA computer-aided design tool (EMMA-CAD), while the precision and speed of acoustic droplet ejection technology are applied in vector assembly. Our pipeline facilitates significant reductions in both reagent usage and researcher hands-on time compared with manual assembly, as shown by system Q-metrics. To demonstrate automated EMMA performance, we compiled a library of 48 distinct plasmid vectors encoding either CRISPR interference or activation modalities. Characterization of the workflow parameters shows that high assembly efficiency is maintained across vectors of various sizes and design complexities. Our system also performs strongly compared with manual assembly efficiency benchmarks. Alongside our automated pipeline, we present a straightforward strategy for integrating gRNA and Cas modules into the EMMA platform, enabling the design and manufacture of valuable genome editing resources.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, U.K
| | - Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Yisha Luo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - David I Fisher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
28
|
Goosens VJ, Walker KT, Aragon SM, Singh A, Senthivel VR, Dekker L, Caro-Astorga J, Buat MLA, Song W, Lee KY, Ellis T. Komagataeibacter Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria. ACS Synth Biol 2021; 10:3422-3434. [PMID: 34767345 DOI: 10.1021/acssynbio.1c00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the Komagataeibacter genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the Komagataeibacter tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids. Working in Komagataeibacter rhaeticus, we describe basic parts for this system, including promoters, fusion tags, and reporter proteins, before showcasing how the assembly system enables more complex designs. Specifically, we use KTK cloning to reformat the Escherichia coli curli amyloid fiber system for functional expression in K. rhaeticus, and go on to modify it as a system for programming protein secretion from the cellulose producing bacteria. With this toolkit, we aim to accelerate modular synthetic biology in these bacteria, and enable more rapid progress in the emerging ELMs community.
Collapse
Affiliation(s)
- Vivianne J. Goosens
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Kenneth T. Walker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Silvia M. Aragon
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Amritpal Singh
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Vivek R. Senthivel
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Linda Dekker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Joaquin Caro-Astorga
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | | | - Wenzhe Song
- Department of Aeronautics, Imperial College London, London SW7 2AZ, U.K
| | - Koon-Yang Lee
- Department of Aeronautics, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
29
|
Mózsik L, Pohl C, Meyer V, Bovenberg RAL, Nygård Y, Driessen AJM. Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synth Biol 2021; 10:2850-2861. [PMID: 34726388 PMCID: PMC8609570 DOI: 10.1021/acssynbio.1c00260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Filamentous fungi
are highly productive cell factories, often used
in industry for the production of enzymes and small bioactive compounds.
Recent years have seen an increasing number of synthetic-biology-based
applications in fungi, emphasizing the need for a synthetic biology
toolkit for these organisms. Here we present a collection of 96 genetic
parts, characterized in Penicillium or Aspergillus species, that are
compatible and interchangeable with the Modular Cloning system. The
toolkit contains natural and synthetic promoters (constitutive and
inducible), terminators, fluorescent reporters, and selection markers.
Furthermore, there are regulatory and DNA-binding domains of transcriptional
regulators and components for implementing different CRISPR-based
technologies. Genetic parts can be assembled into complex multipartite
assemblies and delivered through genomic integration or expressed
from an AMA1-sequence-based, fungal-replicating shuttle vector. With
this toolkit, synthetic transcription units with established promoters,
fusion proteins, or synthetic transcriptional regulation devices can
be more rapidly assembled in a standardized and modular manner for
novel fungal cell factories.
Collapse
Affiliation(s)
- László Mózsik
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Carsten Pohl
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, 2613 AX Delft, The Netherlands
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yvonne Nygård
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
30
|
Koberstein JN, Stewart ML, Mighell TL, Smith CB, Cohen MS. A Sort-Seq Approach to the Development of Single Fluorescent Protein Biosensors. ACS Chem Biol 2021; 16:1709-1720. [PMID: 34431656 PMCID: PMC9807264 DOI: 10.1021/acschembio.1c00423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Motivated by the growing importance of single fluorescent protein biosensors (SFPBs) in biological research and the difficulty in rationally engineering these tools, we sought to increase the rate at which SFPB designs can be optimized. SFPBs generally consist of three components: a circularly permuted fluorescent protein, a ligand-binding domain, and linkers connecting the two domains. In the absence of predictive methods for biosensor engineering, most designs combining these three components will fail to produce allosteric coupling between ligand binding and fluorescence emission. While methods to construct diverse libraries with variation in the site of GFP insertion and linker sequences have been developed, the remaining bottleneck is the ability to test these libraries for functional biosensors. We address this challenge by applying a massively parallel assay termed "sort-seq," which combines binned fluorescence-activated cell sorting, next-generation sequencing, and maximum likelihood estimation to quantify the brightness and dynamic range for many biosensor variants in parallel. We applied this method to two common biosensor optimization tasks: the choice of insertion site and optimization of linker sequences. The sort-seq assay applied to a maltose-binding protein domain-insertion library not only identified previously described high-dynamic-range variants but also discovered new functional insertion sites with diverse properties. A sort-seq assay performed on a pyruvate biosensor linker library expressed in mammalian cell culture identified linker variants with substantially improved dynamic range. Machine learning models trained on the resulting data can predict dynamic range from linker sequences. This high-throughput approach will accelerate the design and optimization of SFPBs, expanding the biosensor toolbox.
Collapse
Affiliation(s)
- John N. Koberstein
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L. Stewart
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Taylor L. Mighell
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chadwick B. Smith
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S. Cohen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
31
|
Nishizaki SS, McDonald TL, Farnum GA, Holmes MJ, Drexel ML, Switzenberg JA, Boyle AP. The Inducible lac Operator-Repressor System Is Functional in Zebrafish Cells. Front Genet 2021; 12:683394. [PMID: 34220959 PMCID: PMC8249864 DOI: 10.3389/fgene.2021.683394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Zebrafish are a foundational model organism for studying the spatio-temporal activity of genes and their regulatory sequences. A variety of approaches are currently available for editing genes and modifying gene expression in zebrafish, including RNAi, Cre/lox, and CRISPR-Cas9. However, the lac operator-repressor system, an E. coli lac operon component which has been adapted for use in many other species and is a valuable, flexible tool for inducible modulation of gene expression studies, has not been previously tested in zebrafish. Results Here we demonstrate that the lac operator-repressor system robustly decreases expression of firefly luciferase in cultured zebrafish fibroblast cells. Our work establishes the lac operator-repressor system as a promising tool for the manipulation of gene expression in whole zebrafish. Conclusion Our results lay the groundwork for the development of lac-based reporter assays in zebrafish, and adds to the tools available for investigating dynamic gene expression in embryogenesis. We believe this work will catalyze the development of new reporter assay systems to investigate uncharacterized regulatory elements and their cell-type specific activities.
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Torrin L McDonald
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Gregory A Farnum
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Monica J Holmes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Melissa L Drexel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
32
|
Mogensen DJ, Westberg M, Breitenbach T, Etzerodt M, Ogilby PR. Stable Transfection of the Singlet Oxygen Photosensitizing Protein SOPP3: Examining Aspects of Intracellular Behavior †. Photochem Photobiol 2021; 97:1417-1430. [PMID: 33934354 DOI: 10.1111/php.13440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Protein-encased chromophores that photosensitize the production of reactive oxygen species, ROS, have been the center of recent activity in studies of oxidative stress. One potential attribute of such systems is that the local environment surrounding the chromophore, and that determines the chromophore's photophysics, ideally remains constant and independent of the global environment into which the system is placed. Therefore, a protein-encased sensitizer localized in the mitochondria would arguably have the same photophysics as that protein-encased sensitizer at the plasma membrane, for example. One thus obtains a useful tool to study processes modulated by spatially localized ROS. One ROS of interest is singlet oxygen, O2 (a1 Δg ). We recently developed a singlet oxygen photosensitizing protein, SOPP, in which flavin mononucleotide, FMN, is encased in a re-engineered light-oxygen-voltage protein. One goal was to ascertain how a version of this system, SOPP3, which selectively makes O2 (a1 Δg ), in vitro, behaves in a cell. We now demonstrate that SOPP3 undergoes exacerbated irradiation-mediated bleaching when expressed at either the plasma membrane or mitochondria in stable cell lines. We find that the environment around the SOPP3 system affects the bleaching rate, which argues against one of the key suppositions in support of a protein-encased chromophore.
Collapse
Affiliation(s)
| | | | | | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
Zulkower V. Computer-Aided Design and Pre-validation of Large Batches of DNA Assemblies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2229:157-166. [PMID: 33405220 DOI: 10.1007/978-1-0716-1032-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Type-2S restriction enzymes allow the routine assembly of large batches of synthetic constructs from individual genetic parts. However, design flaws in the part sequence can cause assembly failures, incurring troubleshooting costs and project delays. As a result, the careful design and checking of the assembly plan is often a bottleneck of large assembly projects, and may require computational support. This chapter demonstrates the use of two free and open-source web applications accelerating this task by automating genetic part design and simulating type-2S cloning to detect potential assembly issues.
Collapse
Affiliation(s)
- Valentin Zulkower
- Edinburgh Genome Foundry, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
34
|
|
35
|
Martella A, Fisher DI. Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes. CRISPR J 2021; 4:43-57. [PMID: 33616442 DOI: 10.1089/crispr.2020.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In complex multicellular systems, gene expression is regulated at multiple stages through interconnected complex molecular pathways and regulatory networks. Transcription is the first step in gene expression and is subject to multiple layers of regulation in which epigenetic mechanisms such as DNA methylation, histone tail modifications, and chromosomal conformation play an essential role. In recent years, CRISPR-Cas9 systems have been employed to unearth this complexity and provide new insights on the contribution of chromatin dysregulation in the development of genetic diseases, as well as new tools to prevent or reverse this dysregulation. In this review, we outline the recent development of a variety of CRISPR-based epigenetic editors for targeted DNA methylation/demethylation, histone modification, and three-dimensional DNA conformational change, highlighting their relative performance and impact on gene regulation. Finally, we provide insights on the future developments aimed to accelerate our understanding of the causal relationship between epigenetic marks, genome organization, and gene regulation.
Collapse
Affiliation(s)
- Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - David I Fisher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
36
|
Aupič J, Strmšek Ž, Lapenta F, Pahovnik D, Pisanski T, Drobnak I, Ljubetič A, Jerala R. Designed folding pathway of modular coiled-coil-based proteins. Nat Commun 2021; 12:940. [PMID: 33574262 PMCID: PMC7878764 DOI: 10.1038/s41467-021-21185-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/13/2021] [Indexed: 12/02/2022] Open
Abstract
Natural proteins are characterised by a complex folding pathway defined uniquely for each fold. Designed coiled-coil protein origami (CCPO) cages are distinct from natural compact proteins, since their fold is prescribed by discrete long-range interactions between orthogonal pairwise-interacting coiled-coil (CC) modules within a single polypeptide chain. Here, we demonstrate that CCPO proteins fold in a stepwise sequential pathway. Molecular dynamics simulations and stopped-flow Förster resonance energy transfer (FRET) measurements reveal that CCPO folding is dominated by the effective intra-chain distance between CC modules in the primary sequence and subsequent folding intermediates, allowing identical CC modules to be employed for multiple cage edges and thus relaxing CCPO cage design requirements. The number of orthogonal modules required for constructing a CCPO tetrahedron can be reduced from six to as little as three different CC modules. The stepwise modular nature of the folding pathway offers insights into the folding of tandem repeat proteins and can be exploited for the design of modular protein structures based on a given set of orthogonal modules.
Collapse
Affiliation(s)
- Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tomaž Pisanski
- FAMNIT, University of Primorska, Koper, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
| | - Igor Drobnak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Pasin F. Oligonucleotide abundance biases aid design of a type IIS synthetic genomics framework with plant virome capacity. Biotechnol J 2021; 16:e2000354. [PMID: 33410597 DOI: 10.1002/biot.202000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Synthetic genomics-driven dematerialization of genetic resources facilitates flexible hypothesis testing and rapid product development. Biological sequences have compositional biases, which, I reasoned, could be exploited for engineering of enhanced synthetic genomics systems. In proof-of-concept assays reported herein, the abundance of random oligonucleotides in viral genomic components was analyzed and used for the rational design of a synthetic genomics framework with plant virome capacity (SynViP). Type IIS endonucleases with low abundance in the plant virome, as well as Golden Gate and No See'm principles were combined with DNA chemical synthesis for seamless viral clone assembly by one-step digestion-ligation. The framework described does not require subcloning steps, is insensitive to insert terminal sequences, and was used with linear and circular DNA molecules. Based on a digital template, DNA fragments were chemically synthesized and assembled by one-step cloning to yield a scar-free infectious clone of a plant virus suitable for Agrobacterium-mediated delivery. SynViP allowed rescue of a genuine virus without biological material, and has the potential to greatly accelerate biological characterization and engineering of plant viruses as well as derived biotechnological tools. Finally, computational identification of compositional biases in biological sequences might become a common standard to aid scalable biosystems design and engineering.
Collapse
Affiliation(s)
- Fabio Pasin
- School of Science, University of Padova, Padova, Italy.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Marillonnet S, Grützner R. Synthetic DNA Assembly Using Golden Gate Cloning and the Hierarchical Modular Cloning Pipeline. ACTA ACUST UNITED AC 2021; 130:e115. [PMID: 32159931 DOI: 10.1002/cpmb.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods that enable the construction of recombinant DNA molecules are essential tools for biological research and biotechnology. Golden Gate cloning is used for assembly of multiple DNA fragments in a defined linear order in a recipient vector using a one-pot assembly procedure. Golden Gate cloning is based on the use of a type IIS restriction enzyme for digestion of the DNA fragments and vector. Because restriction sites for the type IIS enzyme used for assembly must be present at the ends of the DNA fragments and vector but absent from all internal sequences, special care must be taken to prepare DNA fragments and the recipient vector with a structure suitable for assembly by Golden Gate cloning. In this article, protocols are presented for preparation of DNA fragments, modules, and vectors suitable for Golden Gate assembly cloning. Additional protocols are presented for assembly of defined parts in a transcription unit, as well as the stitching together of multiple transcription units into multigene constructs by the modular cloning (MoClo) pipeline. © 2020 The Authors. Basic Protocol 1: Performing a typical Golden Gate cloning reaction Basic Protocol 2: Accommodating a vector to Golden Gate cloning Basic Protocol 3: Accommodating an insert to Golden Gate cloning Basic Protocol 4: Generating small standardized parts compatible with hierarchical modular cloning (MoClo) using level 0 vectors Alternate Protocol: Generating large standardized parts compatible with hierarchical modular cloning (MoClo) using level -1 vectors Basic Protocol 5: Assembling transcription units and multigene constructs using level 1, M, and P MoClo vectors.
Collapse
Affiliation(s)
- Sylvestre Marillonnet
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle, Germany
| | - Ramona Grützner
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle, Germany
| |
Collapse
|
39
|
Di Blasi R, Zouein A, Ellis T, Ceroni F. Genetic Toolkits to Design and Build Mammalian Synthetic Systems. Trends Biotechnol 2021; 39:1004-1018. [PMID: 33526300 DOI: 10.1016/j.tibtech.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Construction of DNA-encoded programs is central to synthetic biology and the chosen method often determines the time required to design and build constructs for testing. Here, we describe and summarise key features of the available toolkits for DNA construction for mammalian cells. We compare the different cloning strategies based on their complexity and the time needed to generate constructs of different sizes, and we reflect on why Golden Gate toolkits now dominate due to their modular design. We look forward to future advances, including accessory packs for cloning toolkits that can facilitate editing, orthogonality, advanced regulation, and integration into synthetic chromosome construction.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Annalise Zouein
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
40
|
Zhang J, Chen Y, Fu L, Guo E, Wang B, Dai L, Si T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr Opin Biotechnol 2021; 67:88-98. [PMID: 33508635 DOI: 10.1016/j.copbio.2021.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Biofuels are a type of sustainable and renewable energy. However, for the economical production of bulk-volume biofuels, biosystems design is particularly challenging to achieve sufficient yield, titer, and productivity. Because of the lack of predictive modeling, high-throughput screening remains essential. Recently established biofoundries provide an emerging infrastructure to accelerate biological design-build-test-learn (DBTL) cycles through the integration of robotics, synthetic biology, and informatics. In this review, we first introduce the technical advances of build and test automation in synthetic biology, focusing on the use of industry-standard microplates for DNA assembly, chassis engineering, and enzyme and strain screening. Proof-of-concept studies on prototypes of automated foundries are then discussed, for improving biomass deconstruction, metabolic conversion, and host robustness. We conclude with future challenges and opportunities in creating a flexible, versatile, and data-driven framework to support biofuel research and development in biofoundries.
Collapse
Affiliation(s)
- Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongcan Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihao Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
41
|
Gilman J, Walls L, Bandiera L, Menolascina F. Statistical Design of Experiments for Synthetic Biology. ACS Synth Biol 2021; 10:1-18. [PMID: 33406821 DOI: 10.1021/acssynbio.0c00385] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The design and optimization of biological systems is an inherently complex undertaking that requires careful balancing of myriad synergistic and antagonistic variables. However, despite this complexity, much synthetic biology research is predicated on One Factor at A Time (OFAT) experimentation; the genetic and environmental variables affecting the activity of a system of interest are sequentially altered while all other variables are held constant. Beyond being time and resource intensive, OFAT experimentation crucially ignores the effect of interactions between factors. Given the ubiquity of interacting genetic and environmental factors in biology this failure to account for interaction effects in OFAT experimentation can result in the development of suboptimal systems. To address these limitations, an increasing number of studies have turned to Design of Experiments (DoE), a suite of methods that enable efficient, systematic exploration and exploitation of complex design spaces. This review provides an overview of DoE for synthetic biologists. Key concepts and commonly used experimental designs are introduced, and we discuss the advantages of DoE as compared to OFAT experimentation. We dissect the applicability of DoE in the context of synthetic biology and review studies which have successfully employed these methods, illustrating the potential of statistical experimental design to guide the design, characterization, and optimization of biological protocols, pathways, and processes.
Collapse
Affiliation(s)
- James Gilman
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Laura Walls
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Lucia Bandiera
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Filippo Menolascina
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| |
Collapse
|
42
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
43
|
Clarke L. Synthetic biology, engineering biology, market expectation. ENGINEERING BIOLOGY 2020; 4:33-36. [PMID: 36968158 PMCID: PMC9996698 DOI: 10.1049/enb.2020.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
'Engineering biology' is being increasingly adopted as a term by organisations that seek to deliver benefits from 'synthetic biology'. However, are 'engineering biology' and 'synthetic biology' different words with the same meaning or do they signal important differences? By observing how these two terms are currently being described and applied in practice, it is possible to differentiate the two whilst also acknowledging significant overlaps and complementarity. Increasing adoption of the term 'engineering biology' reflects the maturing of synthetic biology since the early years of this century from a research concept to a technological platform that is facilitating the delivery of commercial products and services. The term 'synthetic biology' retains a strong association with its original goal to help make biology engineerable, a challenge that will inevitably continue to stimulate research for decades to come as ever more complex and demanding systems are tackled. In comparison, the term 'engineering biology' relates more commonly to the utilisation of the synthetic biology platform alongside other related technologies to deliver effective solutions in response to increasing market challenges and expectations.
Collapse
|
44
|
Ausländer S, Ausländer D, Lang PF, Kemi M, Fussenegger M. Design of Multipartite Transcription Factors for Multiplexed Logic Genome Integration Control in Mammalian Cells. ACS Synth Biol 2020; 9:2964-2970. [PMID: 33213155 PMCID: PMC7684658 DOI: 10.1021/acssynbio.0c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Synthetic
biology relies on rapid and efficient methods to stably
integrate DNA payloads encoding for synthetic biological systems into
the genome of living cells. The size of designed biological systems
increases with their complexity, and novel methods are needed that
enable efficient and simultaneous integration of multiple payloads
into single cells. By assembling natural and synthetic protein–protein
dimerization domains, we have engineered a set of multipartite transcription
factors for driving heterologous target gene expression. With the
distribution of single parts of multipartite transcription factors
on piggyback transposon-based donor plasmids, we have created a logic
genome integration control (LOGIC) system that allows for efficient
one-step selection of stable mammalian cell lines with up to three
plasmids. LOGIC significantly enhances the efficiency of multiplexed
payload integration in mammalian cells compared to traditional cotransfection
and may advance cell line engineering in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Paul F. Lang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Maarit Kemi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
45
|
Abstract
Budding yeast, as a eukaryotic model organism, has well-defined genetic information and a highly efficient recombination system, making it a good host to produce exogenous chemicals. Since most metabolic pathways require multiple genes to function in coordination, it is usually laborious and time-consuming to construct a working pathway. To facilitate the construction and optimization of multicomponent exogenous pathways in yeast, we recently developed a method called YeastFab Assembly, which includes three steps: (1) make standard and reusable genetic parts, (2) construct transcription units from characterized parts, and (3) assemble a complete pathway. Here we describe a detailed protocol of this method.
Collapse
|
46
|
Pryor JM, Potapov V, Kucera RB, Bilotti K, Cantor EJ, Lohman GJS. Enabling one-pot Golden Gate assemblies of unprecedented complexity using data-optimized assembly design. PLoS One 2020; 15:e0238592. [PMID: 32877448 PMCID: PMC7467295 DOI: 10.1371/journal.pone.0238592] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
DNA assembly is an integral part of modern synthetic biology, as intricate genetic engineering projects require robust molecular cloning workflows. Golden Gate assembly is a frequently employed DNA assembly methodology that utilizes a Type IIS restriction enzyme and a DNA ligase to generate recombinant DNA constructs from smaller DNA fragments. However, the utility of this methodology has been limited by a lack of resources to guide experimental design. For example, selection of the DNA sequences at fusion sites between fragments is based on broad assembly guidelines or pre-vetted sets of junctions, rather than being customized for a particular application or cloning project. To facilitate the design of robust assembly reactions, we developed a high-throughput DNA sequencing assay to examine reaction outcomes of Golden Gate assembly with T4 DNA ligase and the most commonly used Type IIS restriction enzymes that generate three-base and four-base overhangs. Next, we incorporated these findings into a suite of webtools that design assembly reactions using the experimental data. These webtools can be used to create customized assemblies from a target DNA sequence or a desired number of fragments. Lastly, we demonstrate how using these tools expands the limits of current assembly systems by carrying out one-pot assemblies of up to 35 DNA fragments. Full implementation of the tools developed here enables direct expansion of existing assembly standards for modular cloning systems (e.g. MoClo) as well as the formation of robust new high-fidelity standards.
Collapse
Affiliation(s)
- John M. Pryor
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Rebecca B. Kucera
- Applications and Product Development, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Katharina Bilotti
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Eric J. Cantor
- Applications and Product Development, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Gregory J. S. Lohman
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Fonseca JP, Bonny AR, Town J, El-Samad H. Assembly of Genetic Circuits with the Mammalian ToolKit. Bio Protoc 2020; 10:e3547. [PMID: 33659521 DOI: 10.21769/bioprotoc.3547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/02/2022] Open
Abstract
The ability to rapidly assemble and prototype cellular circuits is vital for biological research and its applications in biotechnology and medicine. The Mammalian ToolKit (MTK) is a Golden Gate-based cloning toolkit for fast, reproducible and versatile assembly of large DNA vectors and their implementation in mammalian models. The MTK consists of a curated library of characterized, modular parts that can be assembled into transcriptional units and further weaved into complex circuits. These circuits are easily repurposed and introduced in mammalian cells by different methods.
Collapse
Affiliation(s)
- João P Fonseca
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Alain R Bonny
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Jason Town
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA.,CZ Biohub, San Francisco, USA
| |
Collapse
|
48
|
Poliner E, Clark E, Cummings C, Benning C, Farre EM. A high-capacity gene stacking toolkit for the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Matjusaitis M, Wagstaff LJ, Martella A, Baranowski B, Blin C, Gogolok S, Williams A, Pollard SM. Reprogramming of Fibroblasts to Oligodendrocyte Progenitor-like Cells Using CRISPR/Cas9-Based Synthetic Transcription Factors. Stem Cell Reports 2019; 13:1053-1067. [PMID: 31708478 PMCID: PMC6915844 DOI: 10.1016/j.stemcr.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023] Open
Abstract
Cell lineage reprogramming via transgene overexpression of key master regulatory transcription factors has been well documented. However, the poor efficiency and lack of fidelity of this approach is problematic. Synthetic transcription factors (sTFs)-built from the repurposed CRISPR/Cas9 system-can activate endogenous target genes to direct differentiation or trigger lineage reprogramming. Here we explored whether sTFs could be used to steer mouse neural stem cells and mouse embryonic fibroblasts toward the oligodendrocyte lineage. We developed a non-viral modular expression system to enable stable multiplex delivery of pools of sTFs capable of transcriptional activation of three key oligodendrocyte lineage master regulatory genes (Sox10, Olig2, and Nkx6-2). Delivery of these sTFs could enhance neural stem cell differentiation and initiated mouse embryonic fibroblast direct reprograming toward oligodendrocyte progenitor-like cells. Our findings demonstrate the value of sTFs as tools for activating endogenous genes and directing mammalian cell-type identity.
Collapse
Affiliation(s)
- Mantas Matjusaitis
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Laura J Wagstaff
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Andrea Martella
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Bart Baranowski
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carla Blin
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anna Williams
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
50
|
Fonseca JP, Bonny AR, Kumar GR, Ng AH, Town J, Wu QC, Aslankoohi E, Chen SY, Dods G, Harrigan P, Osimiri LC, Kistler AL, El-Samad H. A Toolkit for Rapid Modular Construction of Biological Circuits in Mammalian Cells. ACS Synth Biol 2019; 8:2593-2606. [PMID: 31686495 DOI: 10.1021/acssynbio.9b00322] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to rapidly assemble and prototype cellular circuits is vital for biological research and its applications in biotechnology and medicine. Current methods for the assembly of mammalian DNA circuits are laborious, slow, and expensive. Here we present the Mammalian ToolKit (MTK), a Golden Gate-based cloning toolkit for fast, reproducible, and versatile assembly of large DNA vectors and their implementation in mammalian models. The MTK consists of a curated library of characterized, modular parts that can be assembled into transcriptional units and further weaved into complex circuits. We showcase the capabilities of the MTK by using it to generate single-integration landing pads, create and deliver libraries of protein variants and sgRNAs, and iterate through dCas9-based prototype circuits. As a biological proof of concept, we demonstrate how the MTK can speed the generation of noninfectious viral circuits to enable rapid testing of pharmacological inhibitors of emerging viruses that pose a major threat to human health.
Collapse
Affiliation(s)
- João Pedro Fonseca
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Alain R. Bonny
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - G. Renuka Kumar
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Andrew H. Ng
- Cell Design Initiative, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jason Town
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Qiu Chang Wu
- Harvard Systems Biology Graduate Program, Cambridge, Massachusetts 02138, United States
| | - Elham Aslankoohi
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Susan Y. Chen
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Galen Dods
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Patrick Harrigan
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Lindsey C. Osimiri
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
- The UC Berkeley−UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94132, United States
| | - Amy L. Kistler
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|