1
|
Wan X, Saltepe B, Yu L, Wang B. Programming living sensors for environment, health and biomanufacturing. Microb Biotechnol 2021; 14:2334-2342. [PMID: 33960658 PMCID: PMC8601174 DOI: 10.1111/1751-7915.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Synthetic biology offers new tools and capabilities of engineering cells with desired functions for example as new biosensing platforms leveraging engineered microbes. In the last two decades, bacterial cells have been programmed to sense and respond to various input cues for versatile purposes including environmental monitoring, disease diagnosis and adaptive biomanufacturing. Despite demonstrated proof-of-concept success in the laboratory, the real-world applications of microbial sensors have been restricted due to certain technical and societal limitations. Yet, most limitations can be addressed by new technological developments in synthetic biology such as circuit design, biocontainment and machine learning. Here, we summarize the latest advances in synthetic biology and discuss how they could accelerate the development, enhance the performance and address the present limitations of microbial sensors to facilitate their use in the field. We view that programmable living sensors are promising sensing platforms to achieve sustainable, affordable and easy-to-use on-site detection in diverse settings.
Collapse
Affiliation(s)
- Xinyi Wan
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
| | - Behide Saltepe
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Luyang Yu
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Baojun Wang
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
2
|
Chang HJ, Zúñiga A, Conejero I, Voyvodic PL, Gracy J, Fajardo-Ruiz E, Cohen-Gonsaud M, Cambray G, Pageaux GP, Meszaros M, Meunier L, Bonnet J. Programmable receptors enable bacterial biosensors to detect pathological biomarkers in clinical samples. Nat Commun 2021; 12:5216. [PMID: 34471137 PMCID: PMC8410942 DOI: 10.1038/s41467-021-25538-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial biosensors, or bactosensors, are promising agents for medical and environmental diagnostics. However, the lack of scalable frameworks to systematically program ligand detection limits their applications. Here we show how novel, clinically relevant sensing modalities can be introduced into bactosensors in a modular fashion. To do so, we have leveraged a synthetic receptor platform, termed EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) which supports the modular assembly of sensing modules onto a high-performance, generic signaling scaffold controlling gene expression in E. coli. We apply EMeRALD to detect bile salts, a biomarker of liver dysfunction, by repurposing sensing modules from enteropathogenic Vibrio species. We improve the sensitivity and lower the limit-of-detection of the sensing module by directed evolution. We then engineer a colorimetric bactosensor detecting pathological bile salt levels in serum from patients having undergone liver transplant, providing an output detectable by the naked-eye. The EMeRALD technology enables functional exploration of natural sensing modules and rapid engineering of synthetic receptors for diagnostics, environmental monitoring, and control of therapeutic microbes.
Collapse
Affiliation(s)
- Hung-Ju Chang
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Ana Zúñiga
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Ismael Conejero
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
- Neuropsychiatry: Epidemiological and Clinical Research, Inserm Unit 1061, Montpellier, France
- Department of Psychiatry, CHU Nimes, University of Montpellier, Montpellier, France
| | - Peter L Voyvodic
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Jerome Gracy
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Elena Fajardo-Ruiz
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Guillaume Cambray
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Georges-Philippe Pageaux
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, University of Montpellier, Montpellier, France
| | - Magdalena Meszaros
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, University of Montpellier, Montpellier, France
| | - Lucy Meunier
- Department of Hepatogastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, University of Montpellier, Montpellier, France
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Cao Y, Zhang B, Zhu Z, Xin X, Wu H, Chen B. Microfluidic Based Whole-Cell Biosensors for Simultaneously On-Site Monitoring of Multiple Environmental Contaminants. Front Bioeng Biotechnol 2021; 9:622108. [PMID: 33791284 PMCID: PMC8006271 DOI: 10.3389/fbioe.2021.622108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Monitoring of environmental contaminants serves a vital role in proactive environmental management and pollution control. Research efforts have been centered on the development of robust whole-cell biosensors in recent years. However, data acquisition, multiple contaminants detection and biosafety issues limit the on-site application of such biosensors. Microfluidic system exhibits great potential to face these challenges via coupling biosensors. Here, we prospect a novel microfluidic based whole-cell biosensor (MWCB) for multiplexing monitoring of diverse contaminants, and design strategies to further increase the specificity, sensitivity and accuracy, reduce signal delay and expand shelf life of the proposed MWCB for on-site environmental applications. The development of MWCB demands multidisciplinary cooperation, and the sensing platforms are highly promising for real-world contaminants monitoring.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xiayin Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hongjing Wu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Flagellin-based electrochemical sensing layer for arsenic detection in water. Sci Rep 2021; 11:3497. [PMID: 33568718 PMCID: PMC7876115 DOI: 10.1038/s41598-021-83053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/27/2021] [Indexed: 11/08/2022] Open
Abstract
Regular monitoring of arsenic concentrations in water sources is essential due to the severe health effects. Our goal was to develop a rapidly responding, sensitive and stable sensing layer for the detection of arsenic. We have designed flagellin-based arsenic binding proteins capable of forming stable filament structures with high surface binding site densities. The D3 domain of Salmonella typhimurium flagellin was replaced with an arsenic-binding peptide motif of different bacterial ArsR transcriptional repressor factors. We have shown that the fusion proteins developed retain their polymerization ability and have thermal stability similar to that of wild-type filament. The strong arsenic binding capacity of the monomeric proteins was confirmed by isothermal titration calorimetry (ITC), and dissociation constants (Kd) of a few hundred nM were obtained for all three variants. As-binding fibers were immobilized on the surface of a gold electrode and used as a working electrode in cyclic voltammetry (CV) experiments to detect inorganic arsenic near the maximum allowable concentration (MAC) level. Based on these results, it can be concluded that the stable arsenic-binding flagellin variant can be used as a rapidly responding, sensitive, but simple sensing layer in a field device for the MAC-level detection of arsenic in natural waters.
Collapse
|
5
|
Guo S, Dubuc E, Rave Y, Verhagen M, Twisk SAE, van der Hek T, Oerlemans GJM, van den Oetelaar MCM, van Hazendonk LS, Brüls M, Eijkens BV, Joostens PL, Keij SR, Xing W, Nijs M, Stalpers J, Sharma M, Gerth M, Boonen RJEA, Verduin K, Merkx M, Voets IK, de Greef TFA. Engineered Living Materials Based on Adhesin-Mediated Trapping of Programmable Cells. ACS Synth Biol 2020; 9:475-485. [PMID: 32105449 PMCID: PMC7091533 DOI: 10.1021/acssynbio.9b00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Engineered living materials have the potential for wide-ranging applications such as biosensing and treatment of diseases. Programmable cells provide the functional basis for living materials; however, their release into the environment raises numerous biosafety concerns. Current designs that limit the release of genetically engineered cells typically involve the fabrication of multilayer hybrid materials with submicrometer porous matrices. Nevertheless the stringent physical barriers limit the diffusion of macromolecules and therefore the repertoire of molecules available for actuation in response to communication signals between cells and their environment. Here, we engineer a novel living material entitled "Platform for Adhesin-mediated Trapping of Cells in Hydrogels" (PATCH). This technology is based on engineered E. coli that displays an adhesion protein derived from an Antarctic bacterium with a high affinity for glucose. The adhesin stably anchors E. coli in dextran-based hydrogels with large pore diameters (10-100 μm) and reduces the leakage of bacteria into the environment by up to 100-fold. As an application of PATCH, we engineered E. coli to secrete the bacteriocin lysostaphin which specifically kills Staphyloccocus aureus with low probability of raising antibiotic resistance. We demonstrated that living materials containing this lysostaphin-secreting E. coli inhibit the growth of S. aureus, including the strain resistant to methicillin (MRSA). Our tunable platform allows stable integration of programmable cells in dextran-based hydrogels without compromising free diffusion of macromolecules and could have potential applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martijn Nijs
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | - Jitske Stalpers
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | | | | | | | - Kees Verduin
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | | | | | - Tom F. A. de Greef
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
6
|
Wan X, Volpetti F, Petrova E, French C, Maerkl SJ, Wang B. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol 2019; 15:540-548. [PMID: 30911179 DOI: 10.1038/s41589-019-0244-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022]
Abstract
Cell-based biosensors have great potential to detect various toxic and pathogenic contaminants in aqueous environments. However, frequently they cannot meet practical requirements due to insufficient sensing performance. To address this issue, we investigated a modular, cascaded signal amplifying methodology. We first tuned intracellular sensory receptor densities to increase sensitivity, and then engineered multi-layered transcriptional amplifiers to sequentially boost output expression level. We demonstrated these strategies by engineering ultrasensitive bacterial sensors for arsenic and mercury, and improved detection limit and output up to 5,000-fold and 750-fold, respectively. Coupled by leakage regulation approaches, we developed an encapsulated microbial sensor cell array for low-cost, portable and precise field monitoring, where the analyte can be readily quantified via displaying an easy-to-interpret volume bar-like pattern. The ultrasensitive signal amplifying methodology along with the background regulation and the sensing platform will be widely applicable to many other cell-based sensors, paving the way for their real-world applications.
Collapse
Affiliation(s)
- Xinyi Wan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Francesca Volpetti
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Ekaterina Petrova
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Chris French
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK. .,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Saltepe B, Kehribar EŞ, Su Yirmibeşoğlu SS, Şafak Şeker UÖ. Cellular Biosensors with Engineered Genetic Circuits. ACS Sens 2018; 3:13-26. [PMID: 29168381 DOI: 10.1021/acssensors.7b00728] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing interest in building novel biological devices with designed cellular functionalities has triggered the search of innovative tools for biocomputation. Utilizing the tools of synthetic biology, numerous genetic circuits have been implemented such as engineered logic operation in analog and digital circuits. Whole cell biosensors are widely used biological devices that employ several biocomputation tools to program cells for desired functions. Up to the present date, a wide range of whole-cell biosensors have been designed and implemented for disease theranostics, biomedical applications, and environmental monitoring. In this review, we investigated the recent developments in biocomputation tools such as analog, digital, and mix circuits, logic gates, switches, and state machines. Additionally, we stated the novel applications of biological devices with computing functionalities for diagnosis and therapy of various diseases such as infections, cancer, or metabolic diseases, as well as the detection of environmental pollutants such as heavy metals or organic toxic compounds. Current whole-cell biosensors are innovative alternatives to classical biosensors; however, there is still a need to advance decision making capabilities by developing novel biocomputing devices.
Collapse
Affiliation(s)
- Behide Saltepe
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ebru Şahin Kehribar
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | | | - Urartu Özgür Şafak Şeker
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|