1
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
2
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
3
|
Swartjes T, Shang P, van den Berg DTM, Künne T, Geijsen N, Brouns SJJ, van der Oost J, Staals RHJ, Notebaart RA. Modulating CRISPR-Cas Genome Editing Using Guide-Complementary DNA Oligonucleotides. CRISPR J 2022; 5:571-585. [PMID: 35856642 PMCID: PMC9419950 DOI: 10.1089/crispr.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.
Collapse
Affiliation(s)
- Thomas Swartjes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Tim Künne
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
5
|
Modell AE, Siriwardena SU, Shoba VM, Li X, Choudhary A. Chemical and optical control of CRISPR-associated nucleases. Curr Opin Chem Biol 2020; 60:113-121. [PMID: 33253976 DOI: 10.1016/j.cbpa.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system of bacteria has furnished programmable nucleases (e.g., Cas9) that are transforming the field of genome editing with applications in basic and biomedical research, biotechnology, and agriculture. However, broader real-world applications of Cas9 require precision control of its activity over dose, time, and space as off-target effects, embryonic mosaicism, chromosomal translocations, and genotoxicity have been observed with elevated and/or prolonged nuclease activity. Here, we review chemical and optical methods for precision control of Cas9's activity.
Collapse
Affiliation(s)
- Ashley E Modell
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Sachini U Siriwardena
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Veronika M Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Xing Li
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
George JT, Azhar M, Aich M, Sinha D, Ambi UB, Maiti S, Chakraborty D, Srivatsan SG. Terminal Uridylyl Transferase Mediated Site-Directed Access to Clickable Chromatin Employing CRISPR-dCas9. J Am Chem Soc 2020; 142:13954-13965. [PMID: 32658470 PMCID: PMC7611130 DOI: 10.1021/jacs.0c06541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Locus-specific interrogation of target genes employing functional probes such as proteins and small molecules is paramount in decoding the molecular basis of gene function and designing tools to modulate its downstream effects. In this context, CRISPR-based gene editing and targeting technologies have proved tremendously useful, as they can be programmed to target any gene of interest by simply changing the sequence of the single guide RNA (sgRNA). Although these technologies are widely utilized in recruiting genetically encoded functional proteins, display of small molecules using CRISPR system is not well developed due to the lack of adequate techniques. Here, we have devised an innovative technology called sgRNA-Click (sgR-CLK) that harnesses the power of bioorthogonal click chemistry for remodeling guide RNA to display synthetic molecules on target genes. sgR-CLK employs a novel posttranscriptional chemoenzymatic labeling platform wherein a terminal uridylyl transferase (TUTase) was repurposed to generate clickable sgRNA of choice by site-specific tailoring of multiple azide-modified nucleotide analogues at the 3' end. The presence of a minimally invasive azide handle assured that the sgRNAs are indeed functional. Notably, an azide-tailed sgRNA targeting the telomeric repeat served as a Trojan horse on the CRISPR-dCas9 system to guide synthetic tags (biotin) site-specifically on chromatin employing copper-catalyzed or strain-promoted click reactions. Taken together, sgR-CLK presents a significant advancement on the utility of bioorthogonal chemistry, TUTase, and the CRISPR toolbox, which could offer a simplified solution for site-directed display of small molecule probes and diagnostic tools on target genes.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | | | | | | | - Uddhav B Ambi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Souvik Maiti
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
| | | | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
7
|
Lau CH, Tin C. The Synergy between CRISPR and Chemical Engineering. Curr Gene Ther 2020; 19:147-171. [PMID: 31267870 DOI: 10.2174/1566523219666190701100556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
8
|
Abstract
CRISPR-Cas systems have been engineered as powerful tools to control gene expression in bacteria. The most common strategy relies on the use of Cas effectors modified to bind target DNA without introducing DNA breaks. These effectors can either block the RNA polymerase or recruit it through activation domains. Here, we discuss the mechanistic details of how Cas effectors can modulate gene expression by blocking transcription initiation or acting as transcription roadblocks. CRISPR-Cas tools can be further engineered to obtain fine-tuned control of gene expression or target multiple genes simultaneously. Several caveats in using these tools have also been revealed, including off-target effects and toxicity, making it important to understand the design rules of engineered CRISPR-Cas effectors in bacteria. Alternatively, some types of CRISPR-Cas systems target RNA and could be used to block gene expression at the posttranscriptional level. Finally, we review applications of these tools in high-throughput screens and the progress and challenges in introducing CRISPR knockdown to other species, including nonmodel bacteria with industrial or clinical relevance. A deep understanding of how CRISPR-Cas systems can be harnessed to control gene expression in bacteria and build powerful tools will certainly open novel research directions.
Collapse
Affiliation(s)
- Antoine Vigouroux
- Synthetic Biology, Institut Pasteur, Paris, France
- Microbial Morphogenesis and Growth, Institut Pasteur, Paris, France
| | - David Bikard
- Synthetic Biology, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Wu J, Cheng ZH, Min D, Cheng L, He RL, Liu DF, Li WW. CRISPRi System as an Efficient, Simple Platform for Rapid Identification of Genes Involved in Pollutant Transformation by Aeromonas hydrophila. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3306-3315. [PMID: 32109355 DOI: 10.1021/acs.est.9b07191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aeromonas species are indigenous in diverse aquatic environments and play important roles in environmental remediation. However, the pollutant transformation mechanisms of these bacteria remain elusive, and their potential in pollution control is largely unexploited so far. In this work, we report an efficient and simple genome regulation tool to edit Aeromonas hydrophila and identify its biomolecular pathways for pollutant transformation. The genome regulation system, which is based on the type II clustered regularly interspaced short palindromic repeat interference (CRISPRi) system from Streptococcus pyogenes, can serve as a reversible and multiplexible platform for gene knockdown in A. hydrophila. A single-plasmid CRISPRi system harboring both dCas9 and the sgRNA was constructed in A. hydrophila and used to silence diverse genes with varied sizes and expression levels. With this system, up to 467-fold repression of gfp expression was achieved, and the function of the essential gene-ftsZ was identified quickly and accurately. Furthermore, simultaneous transcriptional repression of multiple targeted genes was realized. We discovered that the ars operon played an essential role in arsenic detoxification, and the extracellular electron transfer (EET) pathway was involved in methyl orange reduction, but not in vanadium reduction by A. hydrophila. Our method allows better insights and effective genetic manipulation of the pollutant transformation processes in Aeromonas, which might facilitate more efficient utilization of the Aeromonas species and other microbial species for environmental remediation applications.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Lei Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
10
|
Schultenkämper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 2020; 67:7-21. [DOI: 10.1002/bab.1901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Luciana F. Brito
- Department of Biotechnology and Food ScienceNTNUNorwegian University of Science and Technology Trondheim Norway
| | | |
Collapse
|