1
|
Yu X, Li H, Tian W, Ge Y, Wang T, Qi Z, Liu J. Single-layer semiconductor-decorated flexible 2D protein nanosheets by engineered anchoring for efficient photocatalytic hydrogen production. Int J Biol Macromol 2024; 261:129819. [PMID: 38290631 DOI: 10.1016/j.ijbiomac.2024.129819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Protein self-assembly can be accurately manipulated to form ordered nanostructures through various supramolecular forces. This strategy is expected to make significant breakthroughs in the field of new biomimetic functional materials. Specifically, the construction of photocatalytic systems on two-dimensional (2D) flexible protein nanosheets meets a great challenge. We introduce a synthetic methodology for creating single-layer semiconductor-decorated protein 2D materials under mild conditions with enhanced light-driven hydrogen production. This approach employs a bioengineered green fluorescent protein (E4P) with the addition of a Cd-binding peptide, enabling precise control of the assembly of CdS quantum dots (QDs) on the protein's surface. Consequently, we obtained 4.3 nm-thin single-layer 2D protein nanosheets with substantial surface areas ideal for accommodating CdS QDs. By orthogonal incorporation of metal-binding peptides and supramolecular coordination, significantly enhancing the overall photocatalytic efficiency. Our findings demonstrate the potential for stable and efficient hydrogen production, highlighting the adaptability and biocompatibility of protein scaffolds for photocatalysis.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Li
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tingting Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Jin Z, Vighi A, Dong Y, Bureau JA, Ignea C. Engineering membrane architecture for biotechnological applications. Biotechnol Adv 2023; 64:108118. [PMID: 36773706 DOI: 10.1016/j.biotechadv.2023.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cellular membranes, predominantly described as a dynamic bilayer, are composed of different lipids, transmembrane proteins, and carbohydrates. Most research on biological membranes focuses on the identification, characterization, and mechanistic aspects of their different components. These studies provide a fundamental understanding of membrane structure, function, and dynamics, establishing a basis for the development of membrane engineering strategies. To date, approaches in this field concentrate on membrane adaptation to harsh conditions during industrial fermentation, which can be caused by temperature, osmotic, or organic solvent stress. With advances in the field of metabolic engineering and synthetic biology, recent breakthroughs include proof of concept microbial production of essential medicines, such as cannabinoids and vinblastine. However, long pathways, low yields, and host adaptation continue to pose challenges to the efficient scale up production of many important compounds. The lipid bilayer is profoundly linked to the activity of heterologous membrane-bound enzymes and transport of metabolites. Therefore, strategies for improving enzyme performance, facilitating pathway reconstruction, and enabling storage of products to increase the yields directly involve cellular membranes. At the forefront of membrane engineering research are re-emerging approaches in lipid research and synthetic biology that manipulate membrane size and composition and target lipid profiles across species. This review summarizes engineering strategies applied to cellular membranes and discusses the challenges and future perspectives, particularly with regards to their applications in host engineering and bioproduction.
Collapse
Affiliation(s)
- Zimo Jin
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Asia Vighi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| |
Collapse
|
3
|
Mellor SB, Behrendorff JBYH, Ipsen JØ, Crocoll C, Laursen T, Gillam EMJ, Pribil M. Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts. FRONTIERS IN PLANT SCIENCE 2023; 13:1049177. [PMID: 36743583 PMCID: PMC9890960 DOI: 10.3389/fpls.2022.1049177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Photosynthetic organelles offer attractive features for engineering small molecule bioproduction by their ability to convert solar energy into chemical energy required for metabolism. The possibility to couple biochemical production directly to photosynthetic assimilation as a source of energy and substrates has intrigued metabolic engineers. Specifically, the chemical diversity found in plants often relies on cytochrome P450-mediated hydroxylations that depend on reductant supply for catalysis and which often lead to metabolic bottlenecks for heterologous production of complex molecules. By directing P450 enzymes to plant chloroplasts one can elegantly deal with such redox prerequisites. In this study, we explore the capacity of the plant photosynthetic machinery to drive P450-dependent formation of the indigo precursor indoxyl-β-D-glucoside (indican) by targeting an engineered indican biosynthetic pathway to tobacco (Nicotiana benthamiana) chloroplasts. We show that both native and engineered variants belonging to the human CYP2 family are catalytically active in chloroplasts when driven by photosynthetic reducing power and optimize construct designs to improve productivity. However, while increasing supply of tryptophan leads to an increase in indole accumulation, it does not improve indican productivity, suggesting that P450 activity limits overall productivity. Co-expression of different redox partners also does not improve productivity, indicating that supply of reducing power is not a bottleneck. Finally, in vitro kinetic measurements showed that the different redox partners were efficiently reduced by photosystem I but plant ferredoxin provided the highest light-dependent P450 activity. This study demonstrates the inherent ability of photosynthesis to support P450-dependent metabolic pathways. Plants and photosynthetic microbes are therefore uniquely suited for engineering P450-dependent metabolic pathways regardless of enzyme origin. Our findings have implications for metabolic engineering in photosynthetic hosts for production of high-value chemicals or drug metabolites for pharmacological studies.
Collapse
Affiliation(s)
- Silas B. Mellor
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - James B. Y. H. Behrendorff
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johan Ø. Ipsen
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center, Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Tomas Laursen
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Mathias Pribil
- Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Hazegh Nikroo A, Lemmens LJM, Wezeman T, Ottmann C, Merkx M, Brunsveld L. Switchable Control of Scaffold Protein Activity via Engineered Phosphoregulated Autoinhibition. ACS Synth Biol 2022; 11:2464-2472. [PMID: 35765959 PMCID: PMC9295147 DOI: 10.1021/acssynbio.2c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scaffold proteins operate as organizing hubs to enable high-fidelity signaling, fulfilling crucial roles in the regulation of cellular processes. Bottom-up construction of controllable scaffolding platforms is attractive for the implementation of regulatory processes in synthetic biology. Here, we present a modular and switchable synthetic scaffolding system, integrating scaffold-mediated signaling with switchable kinase/phosphatase input control. Phosphorylation-responsive inhibitory peptide motifs were fused to 14-3-3 proteins to generate dimeric protein scaffolds with appended regulatory peptide motifs. The availability of the scaffold for intermolecular partner protein binding could be lowered up to 35-fold upon phosphorylation of the autoinhibition motifs, as demonstrated using three different kinases. In addition, a hetero-bivalent autoinhibitory platform design allowed for dual-kinase input regulation of scaffold activity. Reversibility of the regulatory platform was illustrated through phosphatase-controlled abrogation of autoinhibition, resulting in full recovery of 14-3-3 scaffold activity.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Tim Wezeman
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| |
Collapse
|
5
|
Yu R, Shen X, Liu M, Liu X, Yin Z, Li X, Feng W, Hu J, Zhang H, Zheng X, Wang P, Zhang Z. The rice blast fungus MoRgs1 functioning in cAMP signaling and pathogenicity is regulated by casein kinase MoCk2 phosphorylation and modulated by membrane protein MoEmc2. PLoS Pathog 2021; 17:e1009657. [PMID: 34133468 PMCID: PMC8208561 DOI: 10.1371/journal.ppat.1009657] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
GTP-binding protein (G-protein) and regulator of G-protein signaling (RGS) mediated signal transduction are critical in the growth and virulence of the rice blast pathogen Magnaporthe oryzae. We have previously reported that there are eight RGS and RGS-like proteins named MoRgs1 to MoRgs8 playing distinct and shared regulatory functions in M. oryzae and that MoRgs1 has a more prominent role compared to others in the fungus. To further explore the unique regulatory mechanism of MoRgs1, we screened a M. oryzae cDNA library for genes encoding MoRgs1-interacting proteins and identified MoCkb2, one of the two regulatory subunits of the casein kinase (CK) 2 MoCk2. We found that MoCkb2 and the sole catalytic subunit MoCka1 are required for the phosphorylation of MoRgs1 at the plasma membrane (PM) and late endosome (LE). We further found that an endoplasmic reticulum (ER) membrane protein complex (EMC) subunit, MoEmc2, modulates the phosphorylation of MoRgs1 by MoCk2. Interestingly, this phosphorylation is also essential for the GTPase-activating protein (GAP) function of MoRgs1. The balance among MoRgs1, MoCk2, and MoEmc2 ensures normal operation of the G-protein MoMagA-cAMP signaling required for appressorium formation and pathogenicity of the fungus. This has been the first report that an EMC subunit is directly linked to G-protein signaling through modulation of an RGS-casein kinase interaction. G-proteins play a significant role in signal perception and transduction during pathogen and host interactions. In the rice blast fungus M. oryzae, previous studies demonstrated that G-protein/cAMP signaling are important for appressorium formation and pathogenicity. One of the eight regulator of G-protein signaling (RGS) and RGS-like proteins, MoRgs1, targets G-protein MoMagA to regulate cAMP levels and growth and virulence of the fungus; however, how MoRgs1 exhibits this function and its own regulation indifferent from other RGS and RGS-like proteins are not clear. We here demonstrated that MoRgs1 is subject to regulation by the casein kinase 2 MoCk2 through protein phosphorylation, and this regulation is also essential for the GTPase-activating protein (GAP) function of MoRgs1. We also showed that the endoplasmic reticulum (ER) membrane complex (EMC) subunit MoEmc2 modulates MoCk2-mediated MoRgs1 phosphorylation. Balanced interactions among MoRgs1, MoEmc2, and MoCk2 ensure normal appressorium formation and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xuetong Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiao Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wanzhen Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Departments of Microbiology, Immunology, and Parasitology, and Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Behrendorff JBYH. Reductive Cytochrome P450 Reactions and Their Potential Role in Bioremediation. Front Microbiol 2021; 12:649273. [PMID: 33936006 PMCID: PMC8081977 DOI: 10.3389/fmicb.2021.649273] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 enzymes, or P450s, are haem monooxygenases renowned for their ability to insert one atom from molecular oxygen into an exceptionally broad range of substrates while reducing the other atom to water. However, some substrates including many organohalide and nitro compounds present little or no opportunity for oxidation. Under hypoxic conditions P450s can perform reductive reactions, contributing electrons to drive reductive elimination reactions. P450s can catalyse dehalogenation and denitration of a range of environmentally persistent pollutants including halogenated hydrocarbons and nitroamine explosives. P450-mediated reductive dehalogenations were first discovered in the context of human pharmacology but have since been observed in a variety of organisms. Additionally, P450-mediated reductive denitration of synthetic explosives has been discovered in bacteria that inhabit contaminated soils. This review will examine the distribution of P450-mediated reductive dehalogenations and denitrations in nature and discuss synthetic biology approaches to developing P450-based reagents for bioremediation.
Collapse
Affiliation(s)
- James B. Y. H. Behrendorff
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| |
Collapse
|
7
|
Yocum HC, Pham A, Da Silva NA. Successful Enzyme Colocalization Strategies in Yeast for Increased Synthesis of Non-native Products. Front Bioeng Biotechnol 2021; 9:606795. [PMID: 33634084 PMCID: PMC7901933 DOI: 10.3389/fbioe.2021.606795] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Yeast cell factories, particularly Saccharomyces cerevisiae, have proven valuable for the synthesis of non-native compounds, ranging from commodity chemicals to complex natural products. One significant challenge has been ensuring sufficient carbon flux to the desired product. Traditionally, this has been addressed by strategies involving "pushing" and "pulling" the carbon flux toward the products by overexpression while "blocking" competing pathways via downregulation or gene deletion. Colocalization of enzymes is an alternate and complementary metabolic engineering strategy to control flux and increase pathway efficiency toward the synthesis of non-native products. Spatially controlling the pathway enzymes of interest, and thus positioning them in close proximity, increases the likelihood of reaction along that pathway. This mini-review focuses on the recent developments and applications of colocalization strategies, including enzyme scaffolding, construction of synthetic organelles, and organelle targeting, in both S. cerevisiae and non-conventional yeast hosts. Challenges with these techniques and future directions will also be discussed.
Collapse
Affiliation(s)
- Hannah C Yocum
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Anhuy Pham
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Nancy A Da Silva
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
8
|
Behrendorff JB, Borràs‐Gas G, Pribil M. Antimicrobial solid media for screening non-sterile Arabidopsis thaliana seeds. PHYSIOLOGIA PLANTARUM 2020; 169:586-599. [PMID: 32096870 PMCID: PMC7497060 DOI: 10.1111/ppl.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Stable genetic transformation of plants is a low-efficiency process, and identification of positive transformants usually relies on screening for expression of a co-transformed marker gene. Often this involves germinating seeds on solid media containing a selection reagent. Germination on solid media requires surface sterilization of seeds and careful aseptic technique to prevent microbial contamination, but surface sterilization techniques are time consuming and can cause seed mortality if not performed carefully. We developed an antimicrobial cocktail that can be added to solid media to inhibit bacterial and fungal growth without impairing germination, allowing us to bypass the surface sterilization step. Adding a combination of terbinafine (1 μM) and timentin (200 mg l-1 ) to Murashige and Skoog agar delayed the onset of observable microbial growth and did not affect germination of non-sterile seeds from 10 different wild-type and mutant Arabidopsis thaliana accessions. We named this antimicrobial solid medium "MSTT agar". Seedlings sown in non-sterile conditions could be maintained on MSTT agar for up to a week without observable contamination. This medium was compatible with rapid screening methods for hygromycin B, phosphinothricin (BASTA) and nourseothricin resistance genes, meaning that positive transformants can be identified from non-sterile seeds in as little as 4 days after stratification, and transferred to soil before the onset of visible microbial contamination. By using MSTT agar we were able to select genetic transformants on solid media without seed surface sterilization, eliminating a tedious and time-consuming step.
Collapse
Affiliation(s)
- James B.Y.H. Behrendorff
- Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Guillem Borràs‐Gas
- Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
9
|
Synthetic Protein Scaffolding at Biological Membranes. Trends Biotechnol 2019; 38:432-446. [PMID: 31718802 DOI: 10.1016/j.tibtech.2019.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Protein scaffolding is a natural phenomenon whereby proteins colocalize into macromolecular complexes via specific protein-protein interactions. In the case of metabolic enzymes, protein scaffolding drives metabolic flux through specific pathways by colocalizing enzyme active sites. Synthetic protein scaffolding is increasingly used as a mechanism to improve product specificity and yields in metabolic engineering projects. To date, synthetic scaffolding has focused primarily on soluble enzyme systems, but many metabolic pathways for high-value secondary metabolites depend on membrane-bound enzymes. The compositional diversity of biological membranes and general challenges associated with modifying membrane proteins complicate scaffolding with membrane-requiring enzymes. Several recent studies have introduced new approaches to protein scaffolding at membrane surfaces, with notable success in improving product yields from specific metabolic pathways.
Collapse
|