1
|
Drehkopf S, Otten C, Büttner D. Recognition of a translocation motif in the regulator HpaA from Xanthomonas euvesicatoria is controlled by the type III secretion chaperone HpaB. FRONTIERS IN PLANT SCIENCE 2022; 13:955776. [PMID: 35968103 PMCID: PMC9366055 DOI: 10.3389/fpls.2022.955776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The Gram-negative plant-pathogenic bacterium Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato plants. Pathogenicity of X. euvesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells and is associated with an extracellular pilus and a translocon in the plant plasma membrane. Effector protein translocation is activated by the cytoplasmic T3S chaperone HpaB which presumably targets effectors to the T3S system. We previously reported that HpaB is controlled by the translocated regulator HpaA which binds to and inactivates HpaB during the assembly of the T3S system. In the present study, we show that translocation of HpaA depends on the T3S substrate specificity switch protein HpaC and likely occurs after pilus and translocon assembly. Translocation of HpaA requires the presence of a translocation motif (TrM) in the N-terminal region. The TrM consists of an arginine-and proline-rich amino acid sequence and is also essential for the in vivo function of HpaA. Mutation of the TrM allowed the translocation of HpaA in hpaB mutant strains but not in the wild-type strain, suggesting that the recognition of the TrM depends on HpaB. Strikingly, the contribution of HpaB to the TrM-dependent translocation of HpaA was independent of the presence of the C-terminal HpaB-binding site in HpaA. We propose that HpaB generates a recognition site for the TrM at the T3S system and thus restricts the access to the secretion channel to effector proteins. Possible docking sites for HpaA at the T3S system were identified by in vivo and in vitro interaction studies and include the ATPase HrcN and components of the predicted cytoplasmic sorting platform of the T3S system. Notably, the TrM interfered with the efficient interaction of HpaA with several T3S system components, suggesting that it prevents premature binding of HpaA. Taken together, our data highlight a yet unknown contribution of the TrM and HpaB to substrate recognition and suggest that the TrM increases the binding specificity between HpaA and T3S system components.
Collapse
|
2
|
Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, Oh S, Yun J, Yang L, Li G, Pant BD, Jiang Q, Mysore KS. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat Commun 2022; 13:2581. [PMID: 35546550 PMCID: PMC9095702 DOI: 10.1038/s41467-022-30180-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Agrobacterium-mediated plant transformation (AMT) is the basis of modern-day plant biotechnology. One major drawback of this technology is the recalcitrance of many plant species/varieties to Agrobacterium infection, most likely caused by elicitation of plant defense responses. Here, we develop a strategy to increase AMT by engineering Agrobacterium tumefaciens to express a type III secretion system (T3SS) from Pseudomonas syringae and individually deliver the P. syringae effectors AvrPto, AvrPtoB, or HopAO1 to suppress host defense responses. Using the engineered Agrobacterium, we demonstrate increase in AMT of wheat, alfalfa and switchgrass by ~250%-400%. We also show that engineered A. tumefaciens expressing a T3SS can deliver a plant protein, histone H2A-1, to enhance AMT. This strategy is of great significance to both basic research and agricultural biotechnology for transient and stable transformation of recalcitrant plant species/varieties and to deliver proteins into plant cells in a non-transgenic manner.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Clemencia M Rojas
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | - Kevin Dunning
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Jianfei Yun
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Lishan Yang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Guangming Li
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Bikram D Pant
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Kirankumar S Mysore
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA.
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA.
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Otten C, Seifert T, Hausner J, Büttner D. The Contribution of the Predicted Sorting Platform Component HrcQ to Type III Secretion in Xanthomonas campestris pv. vesicatoria Depends on an Internal Translation Start Site. Front Microbiol 2021; 12:752733. [PMID: 34721356 PMCID: PMC8553256 DOI: 10.3389/fmicb.2021.752733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenicity of the Gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. T3S systems are conserved in plant- and animal-pathogenic bacteria and consist of at least nine structural core components, which are designated Sct (secretion and cellular translocation) in animal-pathogenic bacteria. Sct proteins are involved in the assembly of the membrane-spanning secretion apparatus which is associated with an extracellular needle structure and a cytoplasmic sorting platform. Components of the sorting platform include the ATPase SctN, its regulator SctL, and pod-like structures at the periphery of the sorting platform consisting of SctQ proteins. Members of the SctQ family form a complex with the C-terminal protein domain, SctQC, which is translated as separate protein and likely acts either as a structural component of the sorting platform or as a chaperone for SctQ. The sorting platform has been intensively studied in animal-pathogenic bacteria but has not yet been visualized in plant pathogens. We previously showed that the SctQ homolog HrcQ from X. campestris pv. vesicatoria assembles into complexes which associate with the T3S system and interact with components of the ATPase complex. Here, we report the presence of an internal alternative translation start site in hrcQ leading to the separate synthesis of the C-terminal protein region (HrcQC). The analysis of genomic hrcQ mutants showed that HrcQC is essential for pathogenicity and T3S. Increased expression levels of hrcQ or the T3S genes, however, compensated the lack of HrcQC. Interaction studies and protein analyses suggest that HrcQC forms a complex with HrcQ and promotes HrcQ stability. Furthermore, HrcQC colocalizes with HrcQ as was shown by fluorescence microscopy, suggesting that it is part of the predicted cytoplasmic sorting platform. In agreement with this finding, HrcQC interacts with the inner membrane ring protein HrcD and the SctK-like linker protein HrpB4 which contributes to the docking of the HrcQ complex to the membrane-spanning T3S apparatus. Taken together, our data suggest that HrcQC acts as a chaperone for HrcQ and as a structural component of the predicted sorting platform.
Collapse
Affiliation(s)
- Christian Otten
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tanja Seifert
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jens Hausner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniela Büttner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Otten C, Büttner D. HrpB4 from Xanthomonas campestris pv. vesicatoria acts similarly to SctK proteins and promotes the docking of the predicted sorting platform to the type III secretion system. Cell Microbiol 2021; 23:e13327. [PMID: 33733571 DOI: 10.1111/cmi.13327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper and tomato plants. Pathogenicity of X. campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into plant cells. At least nine membrane-associated and cytoplasmic components of the secretion apparatus are homologous to corresponding Sct (secretion and cellular translocation) proteins from animal pathogens, suggesting a similar structural organisation of T3S systems in different bacterial species. T3S in X. campestris pv. vesicatoria also depends on non-conserved proteins with yet unknown function including the essential pathogenicity factor HrpB4. Here, we show that HrpB4 localises to the cytoplasm and the bacterial membranes and interacts with the cytoplasmic domain of the inner membrane (IM) ring component HrcD and the cytoplasmic HrcQ protein. The analysis of HrpB4 deletion derivatives revealed that deletion of the N- or C-terminal protein region affects the interaction of HrpB4 with HrcQ and HrcD as well as its contribution to pathogenicity. HrcQ is a component of the predicted sorting platform, which was identified in animal pathogens as a dynamic heterooligomeric protein complex and associates with the IM ring via SctK proteins. HrcQ complex formation was previously shown by fluorescent microscopy analysis and depends on the presence of the T3S system. In the present study, we provide experimental evidence that the absence of HrpB4 severely affects the docking of HrcQ complexes to the T3S system but does not significantly interfere with HrcQ complex formation in the bacterial cytoplasm. Taken together, our data suggest that HrpB4 links the predicted cytoplasmic sorting platform to the IM rings of the T3S system.
Collapse
Affiliation(s)
- Christian Otten
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Drehkopf S, Otten C, Hausner J, Seifert T, Büttner D. HrpB7 from
Xanthomonas campestris
pv.
vesicatoria
is an essential component of the type III secretion system and shares features of HrpO/FliJ/YscO family members. Cell Microbiol 2020; 22:e13160. [DOI: 10.1111/cmi.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Sabine Drehkopf
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Christian Otten
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Jens Hausner
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Tanja Seifert
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Daniela Büttner
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| |
Collapse
|
6
|
Abstract
The independent naming of components of injectisome-type type III secretion systems in different bacterial species has resulted in considerable confusion, impeding accessibility of the literature and hindering communication between scientists of the same field. A unified nomenclature had been proposed by Hueck more than 20 years ago. It found little attention for many years, but usage was sparked again by recent reviews and an international type III secretion meeting in 2016. Here, we propose that the field consistently switches to an extended version of this nomenclature to be no longer lost in translation.
Collapse
|