1
|
Lane BJ, Ma Y, Yan N, Wang B, Ackermann K, Karamanos TK, Bode BE, Pliotas C. Monitoring the conformational ensemble and lipid environment of a mechanosensitive channel under cyclodextrin-induced membrane tension. Structure 2024; 32:739-750.e4. [PMID: 38521071 DOI: 10.1016/j.str.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/29/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Membrane forces shift the equilibria of mechanosensitive channels enabling them to convert mechanical cues into electrical signals. Molecular tools to stabilize and methods to capture their highly dynamic states are lacking. Cyclodextrins can mimic tension through the sequestering of lipids from membranes. Here we probe the conformational ensemble of MscS by EPR spectroscopy, the lipid environment with NMR, and function with electrophysiology under cyclodextrin-induced tension. We show the extent of MscS activation depends on the cyclodextrin-to-lipid ratio, and that lipids are depleted slower when MscS is present. This has implications in MscS' activation kinetics when distinct membrane scaffolds such as nanodiscs or liposomes are used. We find MscS transits from closed to sub-conducting state(s) before it desensitizes, due to the lack of lipid availability in its vicinity required for closure. Our approach allows for monitoring tension-sensitive states in membrane proteins and screening molecules capable of inducing molecular tension in bilayers.
Collapse
Affiliation(s)
- Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yue Ma
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Nana Yan
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Bolin Wang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Theodoros K Karamanos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
2
|
Vasilopoulou E, Chroumpi T, Skretas G. Escherichia coli strains with precise domain deletions in the ribonuclease RNase E can achieve greatly enhanced levels of membrane protein production. Protein Sci 2024; 33:e4864. [PMID: 38073126 PMCID: PMC10804669 DOI: 10.1002/pro.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Escherichia coli is one of the most widely utilized hosts for production of recombinant membrane proteins (MPs). Bacterial MP production, however, is usually accompanied by severe toxicity and low-level volumetric accumulation. In previous work, we had discovered that co-expression of RraA, an inhibitor of the RNA-degrading activity of RNase E, can efficiently suppress the cytotoxicity associated with the MP overexpression process and, simultaneously, enhance significantly the cellular accumulation of membrane-incorporated recombinant MPs in bacteria. Based on this, we constructed the specialized MP-producing E. coli strain SuptoxR, which can achieve dramatically enhanced volumetric yields of well-folded recombinant MPs. Ιn the present work, we have investigated whether domain deletions in the E. coli RNase E, which exhibit reduced ribonucleolytic activity, can result in suppressed MP-induced toxicity and enhanced recombinant MP production, in a manner resembling the conditions of rraA overexpression in E. coli SuptoxR. We have found that some strains encoding specific RNase E truncation variants can achieve significantly enhanced levels of recombinant MP production. Among these, we have found a single RNase E variant strain, which can efficiently suppress MP-induced toxicity and achieve greatly enhanced levels of recombinant MP production for proteins of both prokaryotic and eukaryotic origin. Based on its properties, and in analogy to the original SuptoxR strain, we have termed this strain SuptoxRNE22. E. coli SuptoxRNE22 can perform better than commercially available bacterial strains, which are frequently utilized for recombinant MP production. We anticipate that SuptoxRNE22 will become a widely utilized host for recombinant MP production in bacteria.
Collapse
Affiliation(s)
- Eleni Vasilopoulou
- Institute for Bio‐innovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
- Department of Biochemistry and BiotechnologyUniversity of ThessalyLarisaGreece
| | - Tania Chroumpi
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
| | - Georgios Skretas
- Institute for Bio‐innovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
| |
Collapse
|
3
|
Cho S, Lee H, Han YH, Park TS, Seo SW, Park TH. Design of an effective small expression tag to enhance GPCR production in E. coli-based cell-free and whole cell expression systems. Protein Sci 2023; 32:e4839. [PMID: 37967042 PMCID: PMC10682694 DOI: 10.1002/pro.4839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in sensory, immune, and tumor metastasis processes, making them valuable targets for pharmacological and sensing applications in various industries. However, most GPCRs have low production yields in Escherichia coli (E. coli) expression systems. To overcome this limitation, we introduced AT10 tag, an effective fusion tag that could significantly enhance expression levels of various GPCRs in E. coli and its derived cell-free protein synthesis (CFPS) system. This AT10 tag consisted of an A/T-rich gene sequence designed via optimization of translation initiation rate. It is translated into a short peptide sequence of 10 amino acids at the N-terminus of GPCRs. Additionally, effector proteins could be utilized to suppress cytotoxicity caused by membrane protein expression, further boosting GPCR production in E. coli. Enhanced expression of various GPCRs using this AT10 tag is a promising approach for large-scale production of functional GPCRs in E. coli-based CFPS and whole cell systems, enabling their potential utilization across a wide range of industrial applications.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Yong Hee Han
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tae Shin Park
- Receptech Research Institute, Receptech Inc.SiheungRepublic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
- Department of Nutritional Science and Food ManagementEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
4
|
Lane BJ, Pliotas C. Approaches for the modulation of mechanosensitive MscL channel pores. Front Chem 2023; 11:1162412. [PMID: 37021145 PMCID: PMC10069478 DOI: 10.3389/fchem.2023.1162412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
MscL was the first mechanosensitive ion channel identified in bacteria. The channel opens its large pore when the turgor pressure of the cytoplasm increases close to the lytic limit of the cellular membrane. Despite their ubiquity across organisms, their importance in biological processes, and the likelihood that they are one of the oldest mechanisms of sensory activation in cells, the exact molecular mechanism by which these channels sense changes in lateral tension is not fully understood. Modulation of the channel has been key to understanding important aspects of the structure and function of MscL, but a lack of molecular triggers of these channels hindered early developments in the field. Initial attempts to activate mechanosensitive channels and stabilize functionally relevant expanded or open states relied on mutations and associated post-translational modifications that were often cysteine reactive. These sulfhydryl reagents positioned at key residues have allowed the engineering of MscL channels for biotechnological purposes. Other studies have modulated MscL by altering membrane properties, such as lipid composition and physical properties. More recently, a variety of structurally distinct agonists have been shown bind to MscL directly, close to a transmembrane pocket that has been shown to have an important role in channel mechanical gating. These agonists have the potential to be developed further into antimicrobial therapies that target MscL, by considering the structural landscape and properties of these pockets.
Collapse
Affiliation(s)
- Benjamin J. Lane
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Dionysopoulou M, Yan N, Wang B, Pliotas C, Diallinas G. Genetic and cellular characterization of MscS-like putative channels in the filamentous fungus Aspergillus nidulans. Channels (Austin) 2022; 16:148-158. [PMID: 35941834 PMCID: PMC9367656 DOI: 10.1080/19336950.2022.2098661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanosensitive ion channels are integral membrane proteins ubiquitously present in bacteria, archaea, and eukarya. They act as molecular sensors of mechanical stress to serve vital functions such as touch, hearing, osmotic pressure, proprioception and balance, while their malfunction is often associated with pathologies. Amongst them, the structurally distinct MscL and MscS channels from bacteria are the most extensively studied. MscS-like channels have been found in plants and Schizosaccharomyces pombe, where they regulate intracellular Ca2+ and cell volume under hypo-osmotic conditions. Here we characterize two MscS-like putative channels, named MscA and MscB, from the model filamentous fungus Aspergillus nidulans. Orthologues of MscA and MscB are present in most fungi, including relative plant and animal pathogens. MscA/MscB and other fungal MscS-like proteins share the three transmembrane helices and the extended C-terminal cytosolic domain that form the structural fingerprint of MscS-like channels with at least three additional transmembrane segments than Escherichia coli MscS. We show that MscA and MscB localize in Endoplasmic Reticulum and the Plasma Membrane, respectively, whereas their overexpression leads to increased CaCl2 toxicity or/and reduction of asexual spore formation. Our findings contribute to understanding the role of MscS-like channels in filamentous fungi and relative pathogens.
Collapse
Affiliation(s)
- Mariangela Dionysopoulou
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom.,Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Nana Yan
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Bolin Wang
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
| |
Collapse
|
6
|
Lane BJ, Wang B, Ma Y, Calabrese AN, El Mkami H, Pliotas C. HDX-guided EPR spectroscopy to interrogate membrane protein dynamics. STAR Protoc 2022; 3:101562. [PMID: 35874470 PMCID: PMC9304679 DOI: 10.1016/j.xpro.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022). Protocols for an integrated EPR-based approach to study membrane protein dynamics Instructions for the sample preparation of spin-labeled membrane proteins Used HDX-MS as a precursor to guide spin labeling strategies for EPR methods Probed solvent accessibility at the single-residue level by ESEEM
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
7
|
Vasilopoulou E, Giannakopoulou A, Kapsalis C, Michou M, Michoglou-Sergiou A, Kolisis FN, Skretas G. Second-Generation Escherichia coli SuptoxR Strains for High-Level Recombinant Membrane Protein Production. ACS Synth Biol 2022; 11:2599-2609. [PMID: 35922033 PMCID: PMC9397408 DOI: 10.1021/acssynbio.1c00598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli is one of the most widely utilized hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently engineered a specialized E. coli strain for enhanced recombinant MP production, termed SuptoxR. By appropriately co-expressing the effector gene rraA, SuptoxR can suppress the high toxicity, which is frequently observed during the MP-overexpression process, and, at the same time, enhance significantly the cellular accumulation of membrane-incorporated and properly folded recombinant MP. The combination of these two beneficial effects results in dramatically enhanced volumetric yields for various prokaryotic and eukaryotic MPs. Here, we engineered second-generation SuptoxR strains with further improved properties, so that they can achieve even higher levels of recombinant MP production. We searched for naturally occurring RraA variants with similar or improved MP toxicity-suppressing and production-promoting effects to that of the native E. coli RraA of the original SuptoxR strain. We found that the RraA proteins from Proteus mirabilis and Providencia stuartii can be even more potent enhancers of MP productivity than the E. coli RraA. By exploiting these two newly identified RraAs, we constructed two second-generation SuptoxR strains, termed SuptoxR2.1 and SuptoxR2.2, whose MP-production capabilities often surpass those of the original SuptoxR significantly. SuptoxR2.1 and SuptoxR2.2 are expected to become widely useful expression hosts for recombinant MP production in bacteria.
Collapse
Affiliation(s)
- Eleni Vasilopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larisa 41500, Greece
| | - Artemis Giannakopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Charalampos Kapsalis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Myrsini Michou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larisa 41500, Greece
| | | | - Fragiskos N Kolisis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens 15772, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| |
Collapse
|
8
|
Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosens Bioelectron 2022; 215:114551. [PMID: 35839622 DOI: 10.1016/j.bios.2022.114551] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.
Collapse
|
9
|
Wang B, Lane BJ, Kapsalis C, Ault JR, Sobott F, El Mkami H, Calabrese AN, Kalli AC, Pliotas C. Pocket delipidation induced by membrane tension or modification leads to a structurally analogous mechanosensitive channel state. Structure 2022; 30:608-622.e5. [PMID: 34986323 PMCID: PMC9033278 DOI: 10.1016/j.str.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
The mechanosensitive ion channel of large conductance MscL gates in response to membrane tension changes. Lipid removal from transmembrane pockets leads to a concerted structural and functional MscL response, but it remains unknown whether there is a correlation between the tension-mediated state and the state derived by pocket delipidation in the absence of tension. Here, we combined pulsed electron paramagnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry, coupled with molecular dynamics simulations under membrane tension, to investigate the structural changes associated with the distinctively derived states. Whether it is tension- or modification-mediated pocket delipidation, we find that MscL samples a similar expanded subconducting state. This is the final step of the delipidation pathway, but only an intermediate stop on the tension-mediated path, with additional tension triggering further channel opening. Our findings hint at synergistic modes of regulation by lipid molecules in membrane tension-activated mechanosensitive channels.
Collapse
Affiliation(s)
- Bolin Wang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Charalampos Kapsalis
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK.
| |
Collapse
|
10
|
Bruni R, Laguerre A, Kaminska A, McSweeney S, Hendrickson WA, Liu Q. High-throughput cell-free screening of eukaryotic membrane protein expression in lipidic mimetics. Protein Sci 2022; 31:639-651. [PMID: 34910339 PMCID: PMC8862427 DOI: 10.1002/pro.4259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
Membrane proteins play essential roles in cellular function and metabolism. Nonetheless, biophysical and structural studies of membrane proteins are impeded by the difficulty of their expression in and purification from heterologous cell-based systems. As an alternative to these cell-based systems, cell-free protein synthesis has proven to be an exquisite method for screening membrane protein targets in a variety of lipidic mimetics. Here we report a high-throughput screening workflow and apply it to screen 61 eukaryotic membrane protein targets. For each target, we tested its expression in lipidic mimetics: two detergents, two liposomes, and two nanodiscs. We show that 35 membrane proteins (57%) can be expressed in a soluble fraction in at least one of the mimetics with the two detergents performing significantly better than nanodiscs and liposomes, in that order. Using the established cell-free workflow, we studied the production and biophysical assays for mitochondrial pyruvate carrier (MPC) complexes. Our studies show that the complexes produced in cell-free are functionally competent in complex formation and substrate binding. Our results highlight the utility of using cell-free systems for screening and production of eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA
| | - Aisha Laguerre
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
Roche DiagnosticsSanta ClaraCaliforniaUSA
| | - Anna‐Maria Kaminska
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
New York Blood CenterNew YorkNew YorkUSA
| | | | - Wayne A. Hendrickson
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| | - Qun Liu
- NSLS‐II, Brookhaven National LaboratoryUptonNew YorkUSA,Biology DepartmentBrookhaven National LaboratoryUptonNew YorkUSA
| |
Collapse
|
11
|
Ma M, Zhao Z, Liang Q, Shen H, Zhao Z, Chen Z, He R, Feng S, Cao D, Gan G, Ye H, Qiu W, Deng J, Ming F, Jia J, Sun C, Li J, Zhang L. Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway. Appl Microbiol Biotechnol 2021; 105:5973-5991. [PMID: 34396488 DOI: 10.1007/s00253-021-11472-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Clostridium butyricum (C. butyricum) is a probiotic that could promote animal growth and protect gut health. So far, current studies mainly keep up with the basic biological functions of C. butyricum, missing the effective strategy to further improve its protective efficiency. A recent report about C. butyricum alleviating intestinal injury through epidermal growth factor receptor (EGFR) inspired us to bridge this gap by porcine epidermal growth factor (EGF) overexpression. Lacking a secretory overexpression system, we constructed the recombinant strains overexpressing pEGF in C. butyricum for the first time and obtained 4 recombinant strains for highly efficient secretion of pEGF (BC/pPD1, BC/pSPP, BC/pGHF, and BC/pDBD). Compared to the wild-type strain, we confirmed that the expression level ranges of the intestinal development-related genes (Claudin-1, GLUT-2, SUC, GLP2R, and EGFR) and anti-inflammation-related gene (IL-10) in IPECs were upregulated under recombinant strain stimulation, and the growth of Staphylococcus aureus and Salmonella typhimurium was significantly inhibited as well. Furthermore, a particular inhibitor (stattic) was used to block STAT3 tyrosine phosphorylation, resulting in the downregulation on antibacterial effect of recombinant strains. This study demonstrated that the secretory overexpression of pEGF in C. butyricum could upregulate the expression level of EGFR, consequently improving the intestinal protective functions of C. butyricum partly following STAT3 signal activation in IPECs and making it a positive loop. These findings on the overexpression strains pointed out a new direction for further development and utilization of C. butyricum. KEY POINTS: • By 12 signal peptide screening in silico, 4 pEGF overexpression strains of C. butyricum/pMTL82151-pEGF for highly efficient secretion of pEGF were generated for the first time. • The secretory overexpression of pEGF promoted the intestinal development, antimicrobial action, and anti-inflammatory function of C. butyricum. • The overexpressed pEGF upregulated the expression level of EGFR and further magnified the gut protective function of recombinant strains which in turn partly depended on STAT3 signal pathway in IPECs.
Collapse
Affiliation(s)
- Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zitong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zhiyang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Rongxiao He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Saixiang Feng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Ding Cao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Guanhua Gan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Hejia Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Weihong Qiu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Chongjun Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
12
|
Michou M, Delivoria DC, Skretas G. High-level Production of Recombinant Membrane Proteins Using the Engineered Escherichia coli Strains SuptoxD and SuptoxR. Bio Protoc 2020; 10:e3710. [PMID: 33659374 DOI: 10.21769/bioprotoc.3710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/25/2020] [Accepted: 06/21/2020] [Indexed: 11/02/2022] Open
Abstract
We have previously described the development of two specialized Escherichia coli strains for high-level recombinant membrane protein (MP) production. These engineered strains, termed SuptoxD and SuptoxR, are capable of suppressing the cytotoxicity caused by MP overexpression and of producing greatly enhanced MP yields. Here, we present a Bio-protocol that describes gene overexpression and culturing conditions that maximize the accumulation of membrane-integrated and well-folded recombinant MPs in these strains.
Collapse
Affiliation(s)
- Myrsini Michou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larisa 41500, Greece
| | - Dafni C Delivoria
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| |
Collapse
|
13
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
14
|
Kapsalis C, Ma Y, Bode BE, Pliotas C. In-Lipid Structure of Pressure-Sensitive Domains Hints Mechanosensitive Channel Functional Diversity. Biophys J 2020; 119:448-459. [PMID: 32621864 PMCID: PMC7376121 DOI: 10.1016/j.bpj.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
The mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis has been used as a structural model for rationalizing functional observations in multiple MscL orthologs. Although these orthologs adopt similar structural architectures, they reportedly present significant functional differences. Subtle structural discrepancies on mechanosensitive channel nanopockets are known to affect mechanical gating and may be linked to large variability in tension sensitivity among these membrane channels. Here, we modify the nanopocket regions of MscL from Escherichia coli and M. tuberculosis and employ PELDOR/DEER distance and 3pESEEM deuterium accessibility measurements to interrogate channel structure within lipids, in which both channels adopt a closed conformation. Significant in-lipid structural differences between the two constructs suggest a more compact E. coli MscL at the membrane inner-leaflet, as a consequence of a rotated TM2 helix. Observed differences within lipids could explain E. coli MscL’s higher tension sensitivity and should be taken into account in extrapolated models used for MscL gating rationalization.
Collapse
Affiliation(s)
- Charalampos Kapsalis
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Yue Ma
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Bela E Bode
- Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, St Andrews, United Kingdom.
| | - Christos Pliotas
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
15
|
Michou M, Stergios A, Skretas G. SuptoxD2.0: A second-generation engineered Escherichia coli strain achieving further enhanced levels of recombinant membrane protein production. Biotechnol Bioeng 2020; 117:2434-2445. [PMID: 32383198 DOI: 10.1002/bit.27378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022]
Abstract
The bacterium Escherichia coli is among the most popular hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently generated the specialized MP-producing E. coli strain SuptoxD, which upon co-expression of the effector gene djlA, is capable of alleviating two major bottlenecks in bacterial recombinant MP production: it suppresses the toxicity that frequently accompanies the MP-overexpression process and it markedly increases the cellular accumulation of membrane incorporated and properly folded recombinant MP. Combined, these two positive effects result in dramatically enhanced volumetric yields for various recombinant MPs of both prokaryotic and eukaryotic origin. Based on the observation that djlA is found in the genomes of various pathogenic bacteria, the aim of the present work was to investigate (a) whether other naturally occurring DjlA variants can exert the MP toxicity-suppressing and production-promoting effects similarly to the E. coli DjlA and (b) if we can identify a DjlA variant whose efficiency surpasses that of the E. coli DjlA of SuptoxD. We report that a quite surprisingly broad variety of homologous DjlA proteins exert beneficial effects on recombinant MP when overexpressed in E. coli. Furthermore, we demonstrate that the Salmonella enterica DjlA is an even more potent enhancer of MP productivity compared with the E. coli DjlA of SuptoxD. Based on this, we constructed a second-generation SuptoxD strain, termed SuptoxD2.0, whose MP-production capabilities surpass significantly those of the original SuptoxD, and we anticipate that SuptoxD2.0 will become a broadly utilized expression host for recombinant MP production in bacteria.
Collapse
Affiliation(s)
- Myrsini Michou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, Greece
| | - Angelos Stergios
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
16
|
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets. Nat Commun 2019; 10:4619. [PMID: 31601809 PMCID: PMC6787021 DOI: 10.1038/s41467-019-12591-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/17/2019] [Indexed: 11/08/2022] Open
Abstract
Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity.
Collapse
|