1
|
Butkovich LV, Vining OB, O'Malley MA. New approaches to secondary metabolite discovery from anaerobic gut microbes. Appl Microbiol Biotechnol 2025; 109:12. [PMID: 39831966 DOI: 10.1007/s00253-024-13393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize in silico tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism. KEY POINTS: • Gut microbial secondary metabolites have therapeutic and biotechnological potential • Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery • Anaerobic biofoundries enable high-throughput workflows for metabolite discovery.
Collapse
Affiliation(s)
- Lazarina V Butkovich
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Oliver B Vining
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Pang Y, Wang J, Dai S, Zhang W, Wang X, Zhang X, Huang Z. Functional redundancy enables a simplified consortium to match the lignocellulose degradation capacity of the original consortium. ENVIRONMENTAL RESEARCH 2025; 264:120373. [PMID: 39551375 DOI: 10.1016/j.envres.2024.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The relationship between structure and function in microbial communities is intriguing and complex. In this study, we used single-carbon source domestication to derive consortium YL from the straw-degrading consortium Y. Y and YL exhibited similar straw degradation capabilities, yet YL harbored only half the species diversity of Y, with distinct dominant species. The most enriched microorganisms in Y were Ureibacillus, Acetanaerobacterium, and Hungateiclostridiaceae, whereas Bacillaceae, Bacillus, and Peptostreptococcales-Tissierellales were most enriched in YL. In-depth analysis revealed that Y and YL had comparable abundances of core lignocellulose-degrading genes, as validated by lignocellulolytic enzyme activity assays. However, the number of species harboring these key lignocellulose-degrading genes (K01179, K01181, K00432) in YL was reduced by over 50%, suggesting that functional redundancy enabled YL to maintain similar degradation capabilities to Y despite reduced diversity. Further analyses of key degradative species and co-occurrence networks highlighted the critical functional roles of dominant degradative species within these communities. An analysis of the overall functional pathways in the two microbial consortia revealed distinct metabolic characteristics between them. Pathways such as polycyclic aromatic hydrocarbon degradation and fluorobenzoate degradation were down-regulated in YL compared to Y, a finding corroborated by the metabolomic data. These results suggest a coupling between community structure and functional capacities within these microbial consortia. Overall, our findings deepen our understanding of the structure-function relationship in microbial communities and provide valuable insights for the design of lignocellulose-degrading consortia.
Collapse
Affiliation(s)
- Yan Pang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300300, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300300, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300300, China.
| | - Shijia Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300300, China
| | - Wanyi Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300300, China
| | - Xinyuan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300300, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300300, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300300, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300300, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300300, China.
| |
Collapse
|
3
|
Xie R, Danso B, Sun J, Al-Zahrani M, Dar MA, Al-Tohamy R, Ali SS. Biorefinery and Bioremediation Strategies for Efficient Management of Recalcitrant Pollutants Using Termites as an Obscure yet Promising Source of Bacterial Gut Symbionts: A Review. INSECTS 2024; 15:908. [PMID: 39590507 PMCID: PMC11594812 DOI: 10.3390/insects15110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production because the lignin, cellulose, and hemicellulose parts stick together rigidly. This makes the structure complex, hierarchical, and resistant. Owing to these restrictions, the junk production of LCB waste has recently become a significant worldwide environmental problem resulting from inefficient disposal techniques and increased persistence. In addition, burning LCB waste, such as paddy straws, is a widespread practice that causes considerable air pollution and endangers the environment and human existence. Besides environmental pollution from LCB waste, increasing industrialization has resulted in the production of billions of tons of dyeing wastewater from several industries, including textiles, pharmaceuticals, tanneries, and food processing units. The massive use of synthetic dyes in various industries can be detrimental to the environment due to the recalcitrant aromatic structure of synthetic dyes, similar to the polymeric phenol lignin in LCB structure, and their persistent color. Synthetic dyes have been described as possessing carcinogenic and toxic properties that could be harmful to public health. Environmental pollution emanating from LCB wastes and dyeing wastewater is of great concern and should be carefully handled to mitigate its catastrophic effects. An effective strategy to curtail these problems is to learn from analogous systems in nature, such as termites, where woody lignocellulose is digested by wood-feeding termites and humus-recalcitrant aromatic compounds are decomposed by soil-feeding termites. The termite gut system acts as a unique bioresource consisting of distinct bacterial species valued for the processing of lignocellulosic materials and the degradation of synthetic dyes, which can be integrated into modern biorefineries for processing LCB waste and bioremediation applications for the treatment of dyeing wastewaters to help resolve environmental issues arising from LCB waste and dyeing wastewaters. This review paper provides a new strategy for efficient management of recalcitrant pollutants by exploring the potential application of termite gut bacteria in biorefinery and bioremediation processing.
Collapse
Affiliation(s)
- Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Blessing Danso
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Majid Al-Zahrani
- Biological Sciences Department, College of Science and Art at Rabigh, King Abdulaziz University, Rabigh 25732, Saudi Arabia;
| | - Mudasir A. Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
| | - Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (B.D.)
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
4
|
Tian K, Zhang Y, Yao D, Tan D, Fu X, Chen R, Zhong M, Dong Y, Liu Y. Synergistic interactions in core microbiome Rhizobiales accelerate 1,4-dioxane biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135098. [PMID: 38970977 DOI: 10.1016/j.jhazmat.2024.135098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Next-generation sequencing (NGS) has revolutionized taxa identification within contaminant-degrading communities. However, uncovering a core degrading microbiome in diverse polluted environments and understanding its associated microbial interactions remains challenging. In this study, we isolated two distinct microbial consortia, namely MA-S and Cl-G, from separate environmental samples using 1,4-dioxane as a target pollutant. Both consortia exhibited a persistent prevalence of the phylum Proteobacteria, especially within the order Rhizobiales. Extensive analysis confirmed that Rhizobiales as the dominant microbial population (> 90 %) across successive degradation cycles, constituting the core degrading microbiome. Co-occurrence network analysis highlighted synergistic interactions within Rhizobiales, especially within the Shinella and Xanthobacter genera, facilitating efficient 1,4-dioxane degradation. The enrichment of Rhizobiales correlated with an increased abundance of essential genes such as PobA, HpaB, ADH, and ALDH. Shinella yambaruensis emerged as a key degrader in both consortia, identified through whole-genome sequencing and RNA-seq analysis, revealing genes implicated in 1,4-dioxane degradation pathways, such as PobA and HpaB. Direct and indirect co-cultivation experiments confirmed synergistic interaction between Shinella sp. and Xanthobacter sp., enhancing the degradation of 1,4-dioxane within the core microbiome Rhizobiales. Our findings advocate for integrating the core microbiome concept into engineered consortia to optimize 1,4-dioxane bioremediation strategies.
Collapse
Affiliation(s)
- Kun Tian
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yue Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dandan Yao
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ding Tan
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Xingjia Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ruihuan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ming Zhong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yuanhua Dong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yun Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
5
|
Nikoloudaki O, Aheto F, Di Cagno R, Gobbetti M. Synthetic microbial communities: A gateway to understanding resistance, resilience, and functionality in spontaneously fermented food microbiomes. Food Res Int 2024; 192:114780. [PMID: 39147468 DOI: 10.1016/j.foodres.2024.114780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
This review delves into the intricate traits of microbial communities encountered in spontaneously fermented foods (SFF), contributing to resistance, resilience, and functionality drivers. Traits of SFF microbiomes comprise of fluctuations in community composition, genetic stability, and condition-specific phenotypes. Synthetic microbial communities (SMCs) serve as a portal for mechanistic insights and strategic re-programming of microbial communities. Current literature underscores the pivotal role of microbiomes in SFF in shaping quality attributes and preserving the cultural heritage of their origin. In contrast to starter driven fermentations that tend to be more controlled but lacking the capacity to maintain or reproduce the complex flavors and intricacies found in SFF. SMCs, therefore, become indispensable tools, providing a nuanced understanding and control over fermented food microbiomes. They empower the prediction and engineering of microbial interactions and metabolic pathways with the aim of optimizing outcomes in food processing. Summarizing the current application of SMCs in fermented foods, there is still space for improvement. Challenges in achieving stability and reproducibility in SMCs are identified, stemming from non-standardized approaches. The future direction should involve embracing standardized protocols, advanced monitoring tools, and synthetic biology applications. A holistic, multi-disciplinary approach is paramount to unleashing the full potential of SMCs and fostering sustainable and innovative applications in fermented food systems.
Collapse
Affiliation(s)
- Olga Nikoloudaki
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| | - Francis Aheto
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
6
|
Zhu F, Wei Y, Wang F, Xia Z, Gou M, Tang Y. Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance. Int Microbiol 2024; 27:1049-1062. [PMID: 38010566 DOI: 10.1007/s10123-023-00458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.
Collapse
Affiliation(s)
- Fangfang Zhu
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Yanfeng Wei
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Fangzhou Wang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Ziyuan Xia
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| |
Collapse
|
7
|
Chen M, Acharya SM, Yee MO, Cabugao KGM, Chakraborty R. Developing stable, simplified, functional consortia from Brachypodium rhizosphere for microbial application in sustainable agriculture. Front Microbiol 2024; 15:1401794. [PMID: 38846575 PMCID: PMC11153752 DOI: 10.3389/fmicb.2024.1401794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The rhizosphere microbiome plays a crucial role in supporting plant productivity and ecosystem functioning by regulating nutrient cycling, soil integrity, and carbon storage. However, deciphering the intricate interplay between microbial relationships within the rhizosphere is challenging due to the overwhelming taxonomic and functional diversity. Here we present our systematic design framework built on microbial colocalization and microbial interaction, toward successful assembly of multiple rhizosphere-derived Reduced Complexity Consortia (RCC). We enriched co-localized microbes from Brachypodium roots grown in field soil with carbon substrates mimicking Brachypodium root exudates, generating 768 enrichments. By transferring the enrichments every 3 or 7 days for 10 generations, we developed both fast and slow-growing reduced complexity microbial communities. Most carbon substrates led to highly stable RCC just after a few transfers. 16S rRNA gene amplicon analysis revealed distinct community compositions based on inoculum and carbon source, with complex carbon enriching slow growing yet functionally important soil taxa like Acidobacteria and Verrucomicrobia. Network analysis showed that microbial consortia, whether differentiated by growth rate (fast vs. slow) or by succession (across generations), had significantly different network centralities. Besides, the keystone taxa identified within these networks belong to genera with plant growth-promoting traits, underscoring their critical function in shaping rhizospheric microbiome networks. Furthermore, tested consortia demonstrated high stability and reproducibility, assuring successful revival from glycerol stocks for long-term viability and use. Our study represents a significant step toward developing a framework for assembling rhizosphere consortia based on microbial colocalization and interaction, with future implications for sustainable agriculture and environmental management.
Collapse
Affiliation(s)
| | | | | | | | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
8
|
Rajeswari G, Kumar V, Jacob S. A concerted enzymatic de-structuring of lignocellulosic materials using a compost-derived microbial consortia favoring the consolidated pretreatment and bio-saccharification. Enzyme Microb Technol 2024; 174:110393. [PMID: 38219439 DOI: 10.1016/j.enzmictec.2023.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
The robustness of microbial consortia isolated from compost habitat encompasses the complementary metabolism that aids in consolidated bioprocessing (CBP) of lignocellulosic biomass (LCB) by division of labor across the symbionts. Composting of organic waste is deemed to be an efficient way of carbon recycling, where the syntrophic microbial population exerts a concerted action of lignin and polysaccharide (hemicellulose and cellulose) component of plant biomass. The potential of this interrelated microorganism could be enhanced through adaptive laboratory evolution (ALE) with LCB for its desired functional capabilities. Therefore, in this study, microbial symbionts derived from organic compost was enriched on saw dust (SD) (woody biomass), aloe vera leaf rind (AVLR) (agro-industrial waste) and commercial filter paper (FP) (pure cellulose) through ALE under different conditions. Later, the efficacy of enriched consortium (EC) on consolidated pretreatment and bio-saccharification was determined based on substrate degradation, endo-enzymes profiling and fermentable sugar yield. Among the treatment sets, AVLR biomass treated with EC-5 has resulted in the higher degradation rate of lignin (47.01 ± 0.66%, w/w) and polysaccharides (45.87 ± 1.82%, w/w) with a total sugar yield of about 60.01 ± 4.24 mg/g. In addition, the extent of structural disintegration of substrate after EC-treatment was clearly deciphered by FTIR and XRD analysis. And the factors of Pearson correlation matrix reinforces the potency of EC-5 by exhibiting a strong positive correlation between AVLR degradation and the sugar release. Thus, a consortium based CBP could promote the feasibility of establishing a sustainable second generation biorefinery framework.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
9
|
Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz TS, Gosselin KM, English CJ, Blair EM, O'Malley MA, Valentine DL. Pontiella agarivorans sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen. Appl Environ Microbiol 2024; 90:e0091423. [PMID: 38265213 PMCID: PMC10880615 DOI: 10.1128/aem.00914-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.
Collapse
Affiliation(s)
- Na Liu
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Xuefeng Peng
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kelsey M. Gosselin
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chance J. English
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Ecology Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Elaina M. Blair
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
- Biological Engineering Program, University of California, Santa Barbara, California, USA
| | - David L. Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
10
|
Jennings SAV, Clavel T. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition. Annu Rev Anim Biosci 2024; 12:283-300. [PMID: 37963399 DOI: 10.1146/annurev-animal-021022-025552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
Collapse
Affiliation(s)
- Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| |
Collapse
|
11
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Lyu X, Nuhu M, Candry P, Wolfanger J, Betenbaugh M, Saldivar A, Zuniga C, Wang Y, Shrestha S. Top-down and bottom-up microbiome engineering approaches to enable biomanufacturing from waste biomass. J Ind Microbiol Biotechnol 2024; 51:kuae025. [PMID: 39003244 PMCID: PMC11287213 DOI: 10.1093/jimb/kuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
Growing environmental concerns and the need to adopt a circular economy have highlighted the importance of waste valorization for resource recovery. Microbial consortia-enabled biotechnologies have made significant developments in the biomanufacturing of valuable resources from waste biomass that serve as suitable alternatives to petrochemical-derived products. These microbial consortia-based processes are designed following a top-down or bottom-up engineering approach. The top-down approach is a classical method that uses environmental variables to selectively steer an existing microbial consortium to achieve a target function. While high-throughput sequencing has enabled microbial community characterization, the major challenge is to disentangle complex microbial interactions and manipulate the structure and function accordingly. The bottom-up approach uses prior knowledge of the metabolic pathway and possible interactions among consortium partners to design and engineer synthetic microbial consortia. This strategy offers some control over the composition and function of the consortium for targeted bioprocesses, but challenges remain in optimal assembly methods and long-term stability. In this review, we present the recent advancements, challenges, and opportunities for further improvement using top-down and bottom-up approaches for microbiome engineering. As the bottom-up approach is relatively a new concept for waste valorization, this review explores the assembly and design of synthetic microbial consortia, ecological engineering principles to optimize microbial consortia, and metabolic engineering approaches for efficient conversion. Integration of top-down and bottom-up approaches along with developments in metabolic modeling to predict and optimize consortia function are also highlighted. ONE-SENTENCE SUMMARY This review highlights the microbial consortia-driven waste valorization for biomanufacturing through top-down and bottom-up design approaches and describes strategies, tools, and unexplored opportunities to optimize the design and stability of such consortia.
Collapse
Affiliation(s)
- Xuejiao Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mujaheed Nuhu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pieter Candry
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Jenna Wolfanger
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexis Saldivar
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Cristal Zuniga
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Ying Wang
- Department of Soil and Crop Sciences, Texas A&M University, TX 77843, USA
| | - Shilva Shrestha
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Sadek A, Taminiau B, Daube G, Sapountzis P, Chaucheyras-Durand F, Castex M, Coucheney F, Drider D. Impact of Dietary Regime and Seasonality on Hindgut's Mycobiota Diversity in Dairy Cows. Microorganisms 2023; 12:84. [PMID: 38257911 PMCID: PMC10820462 DOI: 10.3390/microorganisms12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
We describe and discuss the intestinal mycobiota of dairy cows reared in France following variations in dietary regimes and two seasons. Two groups of 21 animals were followed over a summer and winter period, and another group of 28 animals was followed only during the same summer season. The summer diet was based on grazing supplemented with 3-5 kg/d of maize, grass silage and hay, while the winter diet consisted of 30% maize silage, 25% grass silage, 15% hay and 30% concentrate. A total of 69 DNA samples were extracted from the feces of these cows. Amplification and sequencing of the ITS2 region were used to assess mycobiota diversity. Analyses of alpha and beta diversity were performed and compared statistically. The mycobiota changed significantly from summer to winter conditions with a decrease in its diversity, richness and evenness parameters, while beta diversity analysis showed different mycobiota profiles. Of note, the Geotrichum operational taxonomic unit (OTU) was prevalent in the winter group, with a mean relative abundance (RA) of 65% of the total mycobiota. This Geotrichum OTU was also found in the summer group, but to a lesser extent (5%). In conclusion, a summer grazing diet allowed a higher fecal fungal diversity. These data show, for the first time, that a change in diet associated with seasonality plays a central role in shaping hindgut fungal diversity.
Collapse
Affiliation(s)
- Ali Sadek
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Bernard Taminiau
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
- Fundamental and Applied Research for Animal & Health (FARAH), Veterinary Medicine Faculty, Department of Food Sciences, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
- Fundamental and Applied Research for Animal & Health (FARAH), Veterinary Medicine Faculty, Department of Food Sciences, University of Liège, 4000 Liège, Belgium
| | - Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France;
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France;
| | - Mathieu Castex
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Françoise Coucheney
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
| | - Djamel Drider
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France (B.T.); (G.D.)
| |
Collapse
|
14
|
Heom KA, Wangsanuwat C, Butkovich LV, Tam SC, Rowe AR, O'Malley MA, Dey SS. Targeted rRNA depletion enables efficient mRNA sequencing in diverse bacterial species and complex co-cultures. mSystems 2023; 8:e0028123. [PMID: 37855606 PMCID: PMC10734481 DOI: 10.1128/msystems.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Microbes present one of the most diverse sources of biochemistry in nature, and mRNA sequencing provides a comprehensive view of this biological activity by quantitatively measuring microbial transcriptomes. However, efficient mRNA capture for sequencing presents significant challenges in prokaryotes as mRNAs are not poly-adenylated and typically make up less than 5% of total RNA compared with rRNAs that exceed 80%. Recently developed methods for sequencing bacterial mRNA typically rely on depleting rRNA by tiling large probe sets against rRNAs; however, such approaches are expensive, time-consuming, and challenging to scale to varied bacterial species and complex microbial communities. Therefore, we developed EMBR-seq+, a method that requires fewer than 10 short oligonucleotides per rRNA to achieve up to 99% rRNA depletion in diverse bacterial species. Finally, EMBR-seq+ resulted in a deeper view of the transcriptome, enabling systematic quantification of how microbial interactions result in altering the transcriptional state of bacteria within co-cultures.
Collapse
Affiliation(s)
- Kellie A. Heom
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Lazarina V. Butkovich
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Scott C. Tam
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Annette R. Rowe
- Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
15
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production. Microorganisms 2023; 11:2864. [PMID: 38138008 PMCID: PMC10745983 DOI: 10.3390/microorganisms11122864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims to address this challenge by exploring key antimicrobial interactions. Special attention is given to approaches for developing soil plant growth-promoting bacteria consortia. Additionally, advanced omics-based methods are analyzed that allow soil microbiomes to be characterized, providing an understanding of the molecular and functional aspects of these microbial communities. A comprehensive discussion explores the utilization of bacterial preparations in biofertilizers for agricultural applications, focusing on the intricate design of synthetic bacterial consortia with these preparations. Overall, the review provides valuable insights and strategies for intentionally designing bacterial consortia to enhance plant growth and development.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
16
|
Qi J, Zhou Q, Huang D, Yu Z, Meng F. Construction of synthetic anti-fouling consortia: fouling control effects and polysaccharide degradation mechanisms. Microb Cell Fact 2023; 22:230. [PMID: 37936187 PMCID: PMC10631183 DOI: 10.1186/s12934-023-02235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The physical states and chemical components of bulk sludge determine the occurrence and development of membrane fouling in membrane bioreactors. Thus, regulation of sludge suspensions can provide new strategies for fouling control. In this study, we used "top-down" enrichment to construct a synthetic anti-fouling consortium (SAC) from bio-cake and evaluate its roles in preventing membrane fouling. The SAC was identified as Massilia-dominated and could almost wholly degrade the alginate solution (1,000 mg/L) within 72 h. Two-dimensional Fourier transformation infrared correlation spectroscopy (2D-FTIR-CoS) analysis demonstrated that the SAC induced the breakage of glycosidic bond in alginates. The co-cultivation of sludge with a low dosage of SAC (ranging from 0 to 1%) led to significant fouling mitigation, increased sludge floc size, and decreased unified membrane fouling index value (0.55 ± 0.06 and 0.11 ± 0.05). FTIR spectra and X-ray spectroscopy analyses demonstrated that the addition of SAC decreased the abundance of the O-acetylation of polysaccharides in extracellular polymeric substances. Secondary derivatives analysis of amide I spectra suggested a strong reduction in the α-helix/(β-sheet + random coil) ratio in the presence of SAC, which was expected to enhance cell aggregation. Additionally, the extracellular secretions of SAC could both inhibit biofilm formation and strongly disperse the existing biofilm strongly during the biofilm incubation tests. In summary, this study illustrates the feasibility and benefits of using SAC for fouling control and provides a new strategy for fouling control.
Collapse
Affiliation(s)
- Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Qicheng Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Danlei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
17
|
Wu X, Yu Z, Yuan S, Tawfik A, Meng F. An ecological explanation for carbon source-associated denitrification performance in wastewater treatment plants. WATER RESEARCH 2023; 247:120762. [PMID: 39492355 DOI: 10.1016/j.watres.2023.120762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The underlying mechanism associated with the roles of dosed carbon source in denitrification performance remains largely unknown. In this study, three denitrifying consortia (DNC) were constructed via evolutionary top-down enrichment method with well-defined conditions and specific carbon sources (acetate, glucose and their mixture). The reactor operation shows that nearly complete nitrate removal was achieved; however, the glucose feeding resulted in much higher concentrations of biomass and non-settable flocs. The 16S rRNA sequencing suggests that the bacterial diversity of the acetate-fed DNC was significantly higher than those of acetate/glucose-fed and glucose-fed DNCs. The dentrifying population in the acetate-fed DNC was dominated by Propionivibrio (16.1 %) and Thauera (3.4 %); whereas those of acetate/glucose- and glucose-fed DNCs were dominated by Pleomorphomonas (21.5 % and 26.3 %, respectively). Interestingly, the supernatant of acetate-fed DNC contained a high abundance of genera Thauera (averaged at 85.1 %), indicating the free-living nature of Thauera. Both PICURSt2 analysis of 16S rRNA sequencing and metagenomic analysis indicate that the acetate-fed DNC contained higher abundances of denitrifying genes; the acetate/glucose-fed and glucose-fed DNCs, in comparison, enriched genes related to glucose transportation and metabolism. Additionally, the acetate-fed DNC had better network stability than other two groups. This study adds important knowledge regarding the ecological traits of DNC, providing important clues for rational addition of carbon sources in wastewater treatment plants.
Collapse
Affiliation(s)
- Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt; Department of Environmental Science, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Brown JL, Gierke T, Butkovich LV, Swift CL, Singan V, Daum C, Barry K, Grigoriev IV, O’Malley MA. High-quality RNA extraction and the regulation of genes encoding cellulosomes are correlated with growth stage in anaerobic fungi. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1171100. [PMID: 37746117 PMCID: PMC10512310 DOI: 10.3389/ffunb.2023.1171100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 09/26/2023]
Abstract
Anaerobic fungi produce biomass-degrading enzymes and natural products that are important to harness for several biotechnology applications. Although progress has been made in the development of methods for extracting nucleic acids for genomic and transcriptomic sequencing of these fungi, most studies are limited in that they do not sample multiple fungal growth phases in batch culture. In this study, we establish a method to harvest RNA from fungal monocultures and fungal-methanogen co-cultures, and also determine an optimal time frame for high-quality RNA extraction from anaerobic fungi. Based on RNA quality and quantity targets, the optimal time frame in which to harvest anaerobic fungal monocultures and fungal-methanogen co-cultures for RNA extraction was 2-5 days of growth post-inoculation. When grown on cellulose, the fungal strain Anaeromyces robustus cocultivated with the methanogen Methanobacterium bryantii upregulated genes encoding fungal carbohydrate-active enzymes and other cellulosome components relative to fungal monocultures during this time frame, but expression patterns changed at 24-hour intervals throughout the fungal growth phase. These results demonstrate the importance of establishing methods to extract high-quality RNA from anaerobic fungi at multiple time points during batch cultivation.
Collapse
Affiliation(s)
- Jennifer L. Brown
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Taylor Gierke
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lazarina V. Butkovich
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Candice L. Swift
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Vasanth Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
19
|
Sylvain FÉ, Bouslama S, Holland A, Leroux N, Mercier PL, Val AL, Derome N. Bacterioplankton Communities in Dissolved Organic Carbon-Rich Amazonian Black Water. Microbiol Spectr 2023; 11:e0479322. [PMID: 37199657 PMCID: PMC10269884 DOI: 10.1128/spectrum.04793-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the β-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.
Collapse
Affiliation(s)
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Victoria, Australia
| | - Nicolas Leroux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Adalberto Luis Val
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
20
|
Lankiewicz TS, Choudhary H, Gao Y, Amer B, Lillington SP, Leggieri PA, Brown JL, Swift CL, Lipzen A, Na H, Amirebrahimi M, Theodorou MK, Baidoo EEK, Barry K, Grigoriev IV, Timokhin VI, Gladden J, Singh S, Mortimer JC, Ralph J, Simmons BA, Singer SW, O'Malley MA. Lignin deconstruction by anaerobic fungi. Nat Microbiol 2023; 8:596-610. [PMID: 36894634 PMCID: PMC10066034 DOI: 10.1038/s41564-023-01336-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
Collapse
Affiliation(s)
- Thomas S Lankiewicz
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bashar Amer
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Stephen P Lillington
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Patrick A Leggieri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jennifer L Brown
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Candice L Swift
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsoo Na
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mojgan Amirebrahimi
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael K Theodorou
- Department of Agriculture and Environment, Harper Adams University, Newport, UK
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - John Gladden
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Seema Singh
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - John Ralph
- Great Lakes Bioenergy Research Center, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
21
|
Nieto EE, Macchi M, Valacco MP, Festa S, Morelli IS, Coppotelli BM. Metaproteomic and gene expression analysis of interspecies interactions in a PAH-degrading synthetic microbial consortium constructed with the key microbes of a natural consortium. Biodegradation 2023; 34:181-197. [PMID: 36596914 DOI: 10.1007/s10532-022-10012-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) impose adverse effects on the environment and human life. The use of synthetic microbial consortia is promising in bioremediation of contaminated sites with these pollutants. However, the design of consortia taking advantage of natural interactions has been poorly explored. In this study, a dual synthetic bacterial consortium (DSC_AB) was constructed with two key members (Sphingobium sp. AM and Burkholderia sp. Bk), of a natural PAH degrading consortium. DSC_AB showed significantly enhanced degradation of PAHs and toxic intermediary metabolites relative to the axenic cultures, indicating the existence of synergistic relationships. Metaproteomic and gene-expression analyses were applied to obtain a view of bacterial performance during phenanthrene removal. Overexpression of the Bk genes, naph, biph, tol and sal and the AM gene, ahdB, in DSC_AB relative to axenic cultures, demonstrated that both strains are actively participating in degradation, which gave evidence of cross-feeding. Several proteins related to stress response were under-expressed in DSC_AB relative to axenic cultures, indicating that the division of labour reduces cellular stress, increasing the efficiency of degradation. This is the one of the first works revealing bacterial relationships during PAH removal in a synthetic consortium applying an omics approach. Our findings could be used to develop criteria for evaluating the potential effectiveness of synthetic bacterial consortia in bioremediation.
Collapse
Affiliation(s)
- Esteban E Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - María P Valacco
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, FCEN-UBA, Buenos Aires, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina.
| |
Collapse
|
22
|
Rodriguez A, Hirakawa MP, Geiselman GM, Tran-Gyamfi MB, Light YK, George A, Sale KL. Prospects for utilizing microbial consortia for lignin conversion. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Naturally occurring microbial communities are able to decompose lignocellulosic biomass through the concerted production of a myriad of enzymes that degrade its polymeric components and assimilate the resulting breakdown compounds by members of the community. This process includes the conversion of lignin, the most recalcitrant component of lignocellulosic biomass and historically the most difficult to valorize in the context of a biorefinery. Although several fundamental questions on microbial conversion of lignin remain unanswered, it is known that some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-derived molecules. The interest in developing efficient biological lignin conversion approaches has led to a better understanding of the types of enzymes and organisms that can act on different types of lignin structures, the depolymerized compounds that can be released, and the products that can be generated through microbial biosynthetic pathways. It has become clear that the discovery and implementation of native or engineered microbial consortia could be a powerful tool to facilitate conversion and valorization of this underutilized polymer. Here we review recent approaches that employ isolated or synthetic microbial communities for lignin conversion to bioproducts, including the development of methods for tracking and predicting the behavior of these consortia, the most significant challenges that have been identified, and the possibilities that remain to be explored in this field.
Collapse
|
23
|
Zhang C, Mu Y, Li T, Jin FJ, Jin CZ, Oh HM, Lee HG, Jin L. Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the "Plastisphere". Front Microbiol 2023; 14:1181967. [PMID: 37138608 PMCID: PMC10150012 DOI: 10.3389/fmicb.2023.1181967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Numerous microorganisms and other invertebrates that are able to degrade polyethylene (PE) have been reported. However, studies on PE biodegradation are still limited due to its extreme stability and the lack of explicit insights into the mechanisms and efficient enzymes involved in its metabolism by microorganisms. In this review, current studies of PE biodegradation, including the fundamental stages, important microorganisms and enzymes, and functional microbial consortia, were examined. Considering the bottlenecks in the construction of PE-degrading consortia, a combination of top-down and bottom-up approaches is proposed to identify the mechanisms and metabolites of PE degradation, related enzymes, and efficient synthetic microbial consortia. In addition, the exploration of the plastisphere based on omics tools is proposed as a future principal research direction for the construction of synthetic microbial consortia for PE degradation. Combining chemical and biological upcycling processes for PE waste could be widely applied in various fields to promote a sustainable environment.
Collapse
Affiliation(s)
- Chengxiao Zhang
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yulin Mu
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Taihua Li
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- Hyung-Gwan Lee,
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Long Jin,
| |
Collapse
|
24
|
Enzyme Discovery in Anaerobic Fungi (Neocallimastigomycetes) Enables Lignocellulosic Biorefinery Innovation. Microbiol Mol Biol Rev 2022; 86:e0004122. [PMID: 35852448 PMCID: PMC9769567 DOI: 10.1128/mmbr.00041-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lignocellulosic biorefineries require innovative solutions to realize their full potential, and the discovery of novel lignocellulose-active enzymes could improve biorefinery deconstruction processes. Enzymatic deconstruction of plant cell walls is challenging, as noncarbohydrate linkages in hemicellulosic sidechains and lignin protect labile carbohydrates from hydrolysis. Highly specialized microbes that degrade plant biomass are attractive sources of enzymes for improving lignocellulose deconstruction, and the anaerobic gut fungi (Neocallimastigomycetes) stand out as having great potential for harboring novel lignocellulose-active enzymes. We discuss the known aspects of Neocallimastigomycetes lignocellulose deconstruction, including their extensive carbohydrate-active enzyme content, proficiency at deconstructing complex lignocellulose, unique physiology, synergistic enzyme complexes, and sizeable uncharacterized gene content. Progress describing Neocallimastigomycetes and their enzymes has been rapid in recent years, and it will only continue to expand. In particular, direct manipulation of anaerobic fungal genomes, effective heterologous expression of anaerobic fungal enzymes, and the ability to directly relate chemical changes in lignocellulose to fungal gene regulation will accelerate the discovery and subsequent deployment of Neocallimastigomycetes lignocellulose-active enzymes.
Collapse
|
25
|
Hu H, Wang M, Huang Y, Xu Z, Xu P, Nie Y, Tang H. Guided by the principles of microbiome engineering: Accomplishments and perspectives for environmental use. MLIFE 2022; 1:382-398. [PMID: 38818482 PMCID: PMC10989833 DOI: 10.1002/mlf2.12043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2024]
Abstract
Although the accomplishments of microbiome engineering highlight its significance for the targeted manipulation of microbial communities, knowledge and technical gaps still limit the applications of microbiome engineering in biotechnology, especially for environmental use. Addressing the environmental challenges of refractory pollutants and fluctuating environmental conditions requires an adequate understanding of the theoretical achievements and practical applications of microbiome engineering. Here, we review recent cutting-edge studies on microbiome engineering strategies and their classical applications in bioremediation. Moreover, a framework is summarized for combining both top-down and bottom-up approaches in microbiome engineering toward improved applications. A strategy to engineer microbiomes for environmental use, which avoids the build-up of toxic intermediates that pose a risk to human health, is suggested. We anticipate that the highlighted framework and strategy will be beneficial for engineering microbiomes to address difficult environmental challenges such as degrading multiple refractory pollutants and sustain the performance of engineered microbiomes in situ with indigenous microorganisms under fluctuating conditions.
Collapse
Affiliation(s)
- Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Miaoxiao Wang
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Department of Environmental MicrobiologyETH ZürichEawagSwitzerland
| | - Yiqun Huang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoyong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yong Nie
- College of EngineeringPeking UniversityBeijingChina
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
26
|
Zhu J, Liu J, Li W, Ru Y, Sun D, Liu C, Li Z, Liu W. Dynamic changes in community structure and degradation performance of a bacterial consortium MMBC-1 during the subculturing revival reveal the potential decomposers of lignocellulose. BIORESOUR BIOPROCESS 2022; 9:110. [PMID: 38647799 PMCID: PMC10991580 DOI: 10.1186/s40643-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
Bacterial consortium is an important source of lignocellulolytic strains, but it is still a challenge to distinguish the direct decomposers of lignocellulose from other bacteria in such a complex community. This study aims at addressing this issue by focusing on the dynamic changes in community structure and degradation activity of MMBC-1, an established and stable lignocellulolytic bacterial consortium, during its subculturing revival. MMBC-1 was cryopreserved with glycerol as a protective agent and then inoculated for revival. Its enzyme activities for degradation recovered to the maximum level after two rounds of subculturing. Correspondingly, the cellulose and hemicellulose in lignocellulosic carbon source were gradually decomposed during the revival. Meanwhile, the initial dominant bacteria represented by genus Clostridium were replaced by the bacteria belonging to Lachnospira, Enterococcus, Bacillus, Haloimpatiens genera and family Lachnospiraceae. However, only three high-abundance (> 1%) operational taxonomic units (OTUs) (Lachnospira, Enterococcus and Haloimpatiens genera) were suggested to directly engage in lignocellulose degradation according to correlation analysis. By comparison, many low-abundance OTUs, such as the ones belonging to Flavonifractor and Anaerotruncus genera, may play an important role in degradation. These findings showed the dramatic changes in community structure that occurred during the subculturing revival, and paved the way for the discovery of direct decomposers in a stable consortium.
Collapse
Affiliation(s)
- Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Weilin Li
- Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunrui Ru
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China.
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
27
|
San León D, Nogales J. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities. Curr Opin Microbiol 2022; 69:102169. [PMID: 35763963 DOI: 10.1016/j.mib.2022.102169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
The increasing interest of microbial communities as promising biocatalyst is leading an intense effort into the development of computational frameworks assisting the analysis and rational engineering of such complex ecosystems. Here, we critically review the recent computational and model-guided advances in the system-level engineering of microbiome, including both the rational bottom-up and the evolutionary top-down approaches. Furthermore, we highlight modeling and computational methods supporting both engineering paradigms. Finally, we discuss the advantages of combining both strategies into a hybrid top-down/bottom-up (middle-out) strategy to engineer synthetic microbial communities with improved performance and scope.
Collapse
Affiliation(s)
- David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
28
|
Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front Microbiol 2022; 13:829717. [PMID: 35283862 PMCID: PMC8905317 DOI: 10.3389/fmicb.2022.829717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 01/30/2023] Open
Abstract
In synthetic biology, engineering principles are applied to system design. The development of synthetic microbial consortia represents the intersection of synthetic biology and microbiology. Synthetic community systems are constructed by co-cultivating two or more microorganisms under certain environmental conditions, with broad applications in many fields including ecological restoration and ecological theory. Synthetic microbial consortia tend to have high biological processing efficiencies, because the division of labor reduces the metabolic burden of individual members. In this review, we focus on the environmental applications of synthetic microbial consortia. Although there are many strategies for the construction of synthetic microbial consortia, we mainly introduce the most widely used construction principles based on cross-feeding. Additionally, we propose methods for constructing synthetic microbial consortia based on traits and spatial structure from the perspective of ecology to provide a basis for future work.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Lin L. Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:14. [PMID: 35418100 PMCID: PMC8822760 DOI: 10.1186/s13068-022-02113-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 01/21/2023]
Abstract
Lignocellulose is the most abundant organic carbon polymer on the earth. Its decomposition and conversion greatly impact the global carbon cycle. Furthermore, it provides feedstock for sustainable fuel and other value-added products. However, it continues to be underutilized, due to its highly recalcitrant and heterogeneric structure. Microorganisms, which have evolved versatile pathways to convert lignocellulose, undoubtedly are at the heart of lignocellulose conversion. Numerous studies that have reported successful metabolic engineering of individual strains to improve biological lignin valorization. Meanwhile, the bottleneck of single strain modification is becoming increasingly urgent in the conversion of complex substrates. Alternatively, increased attention has been paid to microbial consortia, as they show advantages over pure cultures, e.g., high efficiency and robustness. Here, we first review recent developments in microbial communities for lignocellulose bioconversion. Furthermore, the emerging area of synthetic ecology, which is an integration of synthetic biology, ecology, and computational biology, provides an opportunity for the bottom-up construction of microbial consortia. Then, we review different modes of microbial interaction and their molecular mechanisms, and discuss considerations of how to employ these interactions to construct synthetic consortia via synthetic ecology, as well as highlight emerging trends in engineering microbial communities for lignocellulose bioconversion.
Collapse
Affiliation(s)
- Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
30
|
Gao J, Qin J, Ye F, Ding F, Liu G, Li A, Ren C, Xu Y. Constructing simplified microbial consortia to improve the key flavour compounds during strong aroma-type Baijiu fermentation. Int J Food Microbiol 2022; 369:109594. [DOI: 10.1016/j.ijfoodmicro.2022.109594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
|
31
|
Brown JL, Swift CL, Mondo SJ, Seppala S, Salamov A, Singan V, Henrissat B, Drula E, Henske JK, Lee S, LaButti K, He G, Yan M, Barry K, Grigoriev IV, O'Malley MA. Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:234. [PMID: 34893091 PMCID: PMC8665504 DOI: 10.1186/s13068-021-02083-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/19/2021] [Indexed: 05/12/2023]
Abstract
Anaerobic fungi and methanogenic archaea are two classes of microorganisms found in the rumen microbiome that metabolically interact during lignocellulose breakdown. Here, stable synthetic co-cultures of the anaerobic fungus Caecomyces churrovis and the methanogen Methanobacterium bryantii (not native to the rumen) were formed, demonstrating that microbes from different environments can be paired based on metabolic ties. Transcriptional and metabolic changes induced by methanogen co-culture were evaluated in C. churrovis across a variety of substrates to identify mechanisms that impact biomass breakdown and sugar uptake. A high-quality genome of C. churrovis was obtained and annotated, which is the first sequenced genome of a non-rhizoid-forming anaerobic fungus. C. churrovis possess an abundance of CAZymes and carbohydrate binding modules and, in agreement with previous studies of early-diverging fungal lineages, N6-methyldeoxyadenine (6mA) was associated with transcriptionally active genes. Co-culture with the methanogen increased overall transcription of CAZymes, carbohydrate binding modules, and dockerin domains in co-cultures grown on both lignocellulose and cellulose and caused upregulation of genes coding associated enzymatic machinery including carbohydrate binding modules in family 18 and dockerin domains across multiple growth substrates relative to C. churrovis monoculture. Two other fungal strains grown on a reed canary grass substrate in co-culture with the same methanogen also exhibited high log2-fold change values for upregulation of genes encoding carbohydrate binding modules in families 1 and 18. Transcriptional upregulation indicated that co-culture of the C. churrovis strain with a methanogen may enhance pyruvate formate lyase (PFL) function for growth on xylan and fructose and production of bottleneck enzymes in sugar utilization pathways, further supporting the hypothesis that co-culture with a methanogen may enhance certain fungal metabolic functions. Upregulation of CBM18 may play a role in fungal-methanogen physical associations and fungal cell wall development and remodeling.
Collapse
Affiliation(s)
- Jennifer L Brown
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Candice L Swift
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Susanna Seppala
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vasanth Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elodie Drula
- Architecture Et Fonction Des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France
- INRAE USC1408, AFMB, 13009, Marseille, France
| | - John K Henske
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Samantha Lee
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
32
|
Blair EM, Dickson KL, O'Malley MA. Microbial communities and their enzymes facilitate degradation of recalcitrant polymers in anaerobic digestion. Curr Opin Microbiol 2021; 64:100-108. [PMID: 34700124 DOI: 10.1016/j.mib.2021.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Microbial consortia efficiently degrade complex biopolymers found in the organic fraction of municipal solid waste (OFMSW). Through enzyme production and division of labor during anaerobic digestion, microbial communities break down recalcitrant polymers and make fermentation products, including methane. However, microbial communities remain underutilized for waste degradation as it remains difficult to characterize and predict microbial interactions during waste breakdown, especially as cultivation conditions change drastically throughout anaerobic digestion. This review discusses recent progress and opportunities in cultivating natural and engineered consortia for OFMSW hydrolysis, including how recalcitrant substrates are degraded by enzymes as well as the critical factors that govern microbial interactions and culture stability. Methods to measure substrate degradation are also reviewed, and we demonstrate the need for increased standardization to enable comparisons across different environments.
Collapse
Affiliation(s)
- Elaina M Blair
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Katharine L Dickson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA.
| |
Collapse
|
33
|
Leggieri PA, Kerdman-Andrade C, Lankiewicz TS, Valentine MT, O’Malley MA. Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture. Microb Cell Fact 2021; 20:199. [PMID: 34663313 PMCID: PMC8522008 DOI: 10.1186/s12934-021-01684-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Quantification of individual species in microbial co-cultures and consortia is critical to understanding and designing communities with prescribed functions. However, it is difficult to physically separate species or measure species-specific attributes in most multi-species systems. Anaerobic gut fungi (AGF) (Neocallimastigomycetes) are native to the rumen of large herbivores, where they exist as minority members among a wealth of prokaryotes. AGF have significant biotechnological potential owing to their diverse repertoire of potent lignocellulose-degrading carbohydrate-active enzymes (CAZymes), which indirectly bolsters activity of other rumen microbes through metabolic exchange. While decades of literature suggest that polysaccharide degradation and AGF growth are accelerated in co-culture with prokaryotes, particularly methanogens, methods have not been available to measure concentrations of individual species in co-culture. New methods to disentangle the contributions of AGF and rumen prokaryotes are sorely needed to calculate AGF growth rates and metabolic fluxes to prove this hypothesis and understand its causality for predictable co-culture design. RESULTS We present a simple, microplate-based method to measure AGF and methanogen concentrations in co-culture based on fluorescence and absorbance spectroscopies. Using samples of < 2% of the co-culture volume, we demonstrate significant increases in AGF growth rate and xylan and glucose degradation rates in co-culture with methanogens relative to mono-culture. Further, we calculate significant differences in AGF metabolic fluxes in co-culture relative to mono-culture, namely increased flux through the energy-generating hydrogenosome organelle. While calculated fluxes highlight uncertainties in AGF primary metabolism that preclude definitive explanations for this shift, our method will enable steady-state fluxomic experiments to probe AGF metabolism in greater detail. CONCLUSIONS The method we present to measure AGF and methanogen concentrations enables direct growth measurements and calculation of metabolic fluxes in co-culture. These metrics are critical to develop a quantitative understanding of interwoven rumen metabolism, as well as the impact of co-culture on polysaccharide degradation and metabolite production. The framework presented here can inspire new methods to probe systems beyond AGF and methanogens. Simple modifications to the method will likely extend its utility to co-cultures with more than two organisms or those grown on solid substrates to facilitate the design and deployment of microbial communities for bioproduction and beyond.
Collapse
Affiliation(s)
- Patrick A. Leggieri
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Corey Kerdman-Andrade
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Thomas S. Lankiewicz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 USA
- Joint BioEnergy Institute (JBEI), Emeryville, CA 94608 USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
- Joint BioEnergy Institute (JBEI), Emeryville, CA 94608 USA
| |
Collapse
|
34
|
Leggieri PA, Liu Y, Hayes M, Connors B, Seppälä S, O'Malley MA, Venturelli OS. Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annu Rev Biomed Eng 2021; 23:169-201. [PMID: 33781078 PMCID: PMC8277735 DOI: 10.1146/annurev-bioeng-082120-022836] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. The spatial and temporal changes in microbiome composition and function are influenced by a multitude of molecular and ecological factors. This complexity yields both versatility and challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, predictable ways. In this review, we describe factors that give rise to emergent spatial and temporal microbiome properties and the meta-omics and computational modeling tools that can be used to understand microbiomes at the cellular and system levels. We also describe strategies for designing and engineering microbiomes to enhance or build novel functions. Throughout the review, we discuss key knowledge and technology gaps for elucidating the networks and deciphering key control points for microbiome engineering, and highlight examples where multiple omics and modeling approaches can be integrated to address these gaps.
Collapse
Affiliation(s)
- Patrick A Leggieri
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Yiyi Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Madeline Hayes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Bryce Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
35
|
Chang CY, Vila JCC, Bender M, Li R, Mankowski MC, Bassette M, Borden J, Golfier S, Sanchez PGL, Waymack R, Zhu X, Diaz-Colunga J, Estrela S, Rebolleda-Gomez M, Sanchez A. Engineering complex communities by directed evolution. Nat Ecol Evol 2021; 5:1011-1023. [PMID: 33986540 PMCID: PMC8263491 DOI: 10.1038/s41559-021-01457-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/28/2021] [Indexed: 02/03/2023]
Abstract
Directed evolution has been used for decades to engineer biological systems at or below the organismal level. Above the organismal level, a small number of studies have attempted to artificially select microbial ecosystems, with uneven and generally modest success. Our theoretical understanding of artificial ecosystem selection is limited, particularly for large assemblages of asexual organisms, and we know little about designing efficient methods to direct their evolution. Here, we have developed a flexible modelling framework that allows us to systematically probe any arbitrary selection strategy on any arbitrary set of communities and selected functions. By artificially selecting hundreds of in silico microbial metacommunities under identical conditions, we first show that the main breeding methods used to date, which do not necessarily let communities reach their ecological equilibrium, are outperformed by a simple screen of sufficiently mature communities. We then identify a range of alternative directed evolution strategies that, particularly when applied in combination, are well suited for the top-down engineering of large, diverse and stable microbial consortia. Our results emphasize that directed evolution allows an ecological structure-function landscape to be navigated in search of dynamically stable and ecologically resilient communities with desired quantitative attributes.
Collapse
Affiliation(s)
- Chang-Yu Chang
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Jean C C Vila
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Madeline Bender
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Richard Li
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Madeleine C Mankowski
- Department of Immunobiology and Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Molly Bassette
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Julia Borden
- Department of Molecular & Cellular Biology, University of California Berkeley, Berkeley, CA, USA
| | - Stefan Golfier
- Max Planck Institute of Molecular Cell Biology and Genetics, and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Paul Gerald L Sanchez
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg, Germany
| | - Rachel Waymack
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Xinwen Zhu
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA, USA
| | - Juan Diaz-Colunga
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Maria Rebolleda-Gomez
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
36
|
Hillman ET, Li M, Hooker CA, Englaender JA, Wheeldon I, Solomon KV. Hydrolysis of lignocellulose by anaerobic fungi produces free sugars and organic acids for two-stage fine chemical production with Kluyveromyces marxianus. Biotechnol Prog 2021; 37:e3172. [PMID: 33960738 DOI: 10.1002/btpr.3172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Development of the bioeconomy is driven by our ability to access the energy-rich carbon trapped in recalcitrant plant materials. Current strategies to release this carbon rely on expensive enzyme cocktails and physicochemical pretreatment, producing inhibitory compounds that hinder subsequent microbial bioproduction. Anaerobic fungi are an appealing solution as they hydrolyze crude, untreated biomass at ambient conditions into sugars that can be converted into value-added products by partner organisms. However, some carbon is lost to anaerobic fungal fermentation products. To improve efficiency and recapture this lost carbon, we built a two-stage bioprocessing system pairing the anaerobic fungus Piromyces indianae with the yeast Kluyveromyces marxianus, which grows on a wide range of sugars and fermentation products. In doing so we produce fine and commodity chemicals directly from untreated lignocellulose. P. indianae efficiently hydrolyzed substrates such as corn stover and poplar to generate sugars, fermentation acids, and ethanol, which K. marxianus consumed while producing 2.4 g/L ethyl acetate. An engineered strain of K. marxianus was also able to produce 550 mg/L 2-phenylethanol and 150 mg/L isoamyl alcohol from P. indianae hydrolyzed lignocellulosic biomass. Despite the use of crude untreated plant material, production yields were comparable to optimized rich yeast media due to the use of all available carbon including organic acids, which formed up to 97% of free carbon in the fungal hydrolysate. This work demonstrates that anaerobic fungal pretreatment of lignocellulose can sustain the production of fine chemicals at high efficiency by partnering organisms with broad substrate versatility.
Collapse
Affiliation(s)
- Ethan T Hillman
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA.,Purdue University Interdisciplinary Life Sciences (PULSe) Program, Purdue University, West Lafayette, Indiana, USA
| | - Mengwan Li
- Department of Chemical & Environmental Engineering, University of California Riverside, Riverside, California, USA
| | - Casey A Hooker
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA.,Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA
| | - Jacob A Englaender
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Ian Wheeldon
- Department of Chemical & Environmental Engineering, University of California Riverside, Riverside, California, USA
| | - Kevin V Solomon
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA.,Purdue University Interdisciplinary Life Sciences (PULSe) Program, Purdue University, West Lafayette, Indiana, USA.,Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
37
|
Sánchez Á, Vila JCC, Chang CY, Diaz-Colunga J, Estrela S, Rebolleda-Gomez M. Directed Evolution of Microbial Communities. Annu Rev Biophys 2021; 50:323-341. [PMID: 33646814 PMCID: PMC8105285 DOI: 10.1146/annurev-biophys-101220-072829] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure-function landscape and propose practical guidelines for navigating these ecological landscapes.
Collapse
Affiliation(s)
- Álvaro Sánchez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Jean C C Vila
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Chang-Yu Chang
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Juan Diaz-Colunga
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - María Rebolleda-Gomez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| |
Collapse
|
38
|
Estrela S, Sánchez Á, Rebolleda-Gómez M. Multi-Replicated Enrichment Communities as a Model System in Microbial Ecology. Front Microbiol 2021; 12:657467. [PMID: 33897672 PMCID: PMC8062719 DOI: 10.3389/fmicb.2021.657467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Recent advances in robotics and affordable genomic sequencing technologies have made it possible to establish and quantitatively track the assembly of enrichment communities in high-throughput. By conducting community assembly experiments in up to thousands of synthetic habitats, where the extrinsic sources of variation among replicates can be controlled, we can now study the reproducibility and predictability of microbial community assembly at different levels of organization, and its relationship with nutrient composition and other ecological drivers. Through a dialog with mathematical models, high-throughput enrichment communities are bringing us closer to the goal of developing a quantitative predictive theory of microbial community assembly. In this short review, we present an overview of recent research on this growing field, highlighting the connection between theory and experiments and suggesting directions for future work.
Collapse
Affiliation(s)
- Sylvie Estrela
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Álvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | |
Collapse
|
39
|
Wang J, Carper DL, Burdick LH, Shrestha HK, Appidi MR, Abraham PE, Timm CM, Hettich RL, Pelletier DA, Doktycz MJ. Formation, characterization and modeling of emergent synthetic microbial communities. Comput Struct Biotechnol J 2021; 19:1917-1927. [PMID: 33995895 PMCID: PMC8079826 DOI: 10.1016/j.csbj.2021.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial communities colonize plant tissues and contribute to host function. How these communities form and how individual members contribute to shaping the microbial community are not well understood. Synthetic microbial communities, where defined individual isolates are combined, can serve as valuable model systems for uncovering the organizational principles of communities. Using genome-defined organisms, systematic analysis by computationally-based network reconstruction can lead to mechanistic insights and the metabolic interactions between species. In this study, 10 bacterial strains isolated from the Populus deltoides rhizosphere were combined and passaged in two different media environments to form stable microbial communities. The membership and relative abundances of the strains stabilized after around 5 growth cycles and resulted in just a few dominant strains that depended on the medium. To unravel the underlying metabolic interactions, flux balance analysis was used to model microbial growth and identify potential metabolic exchanges involved in shaping the microbial communities. These analyses were complemented by growth curves of the individual isolates, pairwise interaction screens, and metaproteomics of the community. A fast growth rate is identified as one factor that can provide an advantage for maintaining presence in the community. Final community selection can also depend on selective antagonistic relationships and metabolic exchanges. Revealing the mechanisms of interaction among plant-associated microorganisms provides insights into strategies for engineering microbial communities that can potentially increase plant growth and disease resistance. Further, deciphering the membership and metabolic potentials of a bacterial community will enable the design of synthetic communities with desired biological functions.
Collapse
Affiliation(s)
- Jia Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Leah H. Burdick
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K. Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Collin M. Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Corresponding authors.
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Corresponding authors.
| |
Collapse
|
40
|
Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production. Microorganisms 2021; 9:694. [PMID: 33801700 PMCID: PMC8065543 DOI: 10.3390/microorganisms9040694] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose is a promising feedstock for biofuel production as a renewable, carbohydrate-rich and globally abundant source of biomass. However, challenges faced include environmental and/or financial costs associated with typical lignocellulose pretreatments needed to overcome the natural recalcitrance of the material before conversion to biofuel. Anaerobic fungi are a group of underexplored microorganisms belonging to the early diverging phylum Neocallimastigomycota and are native to the intricately evolved digestive system of mammalian herbivores. Anaerobic fungi have promising potential for application in biofuel production processes due to the combination of their highly effective ability to hydrolyse lignocellulose and capability to convert this substrate to H2 and ethanol. Furthermore, they can produce volatile fatty acid precursors for subsequent biological conversion to H2 or CH4 by other microorganisms. The complex biological characteristics of their natural habitat are described, and these features are contextualised towards the development of suitable industrial systems for in vitro growth. Moreover, progress towards achieving that goal is reviewed in terms of process and genetic engineering. In addition, emerging opportunities are presented for the use of anaerobic fungi for lignocellulose pretreatment; dark fermentation; bioethanol production; and the potential for integration with methanogenesis, microbial electrolysis cells and photofermentation.
Collapse
Affiliation(s)
- Luke M. G. Saye
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Tejas A. Navaratna
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - James P. J. Chong
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - Michael K. Theodorou
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Matthew Reilly
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| |
Collapse
|
41
|
Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus. mSystems 2021; 6:6/1/e00002-21. [PMID: 33594000 PMCID: PMC8561657 DOI: 10.1128/msystems.00002-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fungus Neocallimastix lanati from which we constructed the first genome-scale metabolic model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62× depth), it is the least fragmented publicly available gut fungal genome to date. Of the 1,788 lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal cellulosome, underscoring the powerful lignocellulolytic potential of N. lanati. The genome-scale metabolic model captures the primary metabolism of N. lanati and accurately predicts experimentally validated substrate utilization requirements. Additionally, metabolic flux predictions are verified by 13C metabolic flux analysis, demonstrating that the model faithfully describes the underlying fungal metabolism. Furthermore, the model clarifies key aspects of the hydrogenosomal metabolism and can be used as a platform to quantitatively study these biotechnologically important yet poorly understood early-branching fungi. IMPORTANCE Recent genomic analyses have revealed that anaerobic gut fungi possess both the largest number and highest diversity of lignocellulolytic enzymes of all sequenced fungi, explaining their ability to decompose lignocellulosic substrates, e.g., agricultural waste, into fermentable sugars. Despite their potential, the development of engineering methods for these organisms has been slow due to their complex life cycle, understudied metabolism, and challenging anaerobic culture requirements. Currently, there is no framework that can be used to combine multi-omic data sets to understand their physiology. Here, we introduce a high-quality PacBio-sequenced genome of the anaerobic gut fungus Neocallimastix lanati. Beyond identifying a trove of lignocellulolytic enzymes, we use this genome to construct the first genome-scale metabolic model of an anaerobic gut fungus. The model is experimentally validated and sheds light on unresolved metabolic features common to gut fungi. Model-guided analysis will pave the way for deepening our understanding of anaerobic gut fungi and provides a systematic framework to guide strain engineering efforts of these organisms for biotechnological use.
Collapse
|
42
|
Dilution-to-Stimulation/Extinction Method: a Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Appl Environ Microbiol 2021; 87:AEM.02427-20. [PMID: 33127812 PMCID: PMC7783344 DOI: 10.1128/aem.02427-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The significance of our study mainly lies in the development of a combined top-down enrichment strategy (i.e., dilution to stimulation coupled to dilution to extinction) to build a minimal and versatile lignocellulolytic microbial consortium. We demonstrated that mainly two selectively enriched bacterial species (Pseudomonas sp. and Paenibacillus sp.) are required to drive the effective degradation of plant polymers. Our findings can guide the design of a synthetic bacterial consortium that could improve saccharification (i.e., the release of sugars from agricultural plant residues) processes in biorefineries. In addition, they can help to expand our ecological understanding of plant biomass degradation in enriched bacterial systems. The engineering of complex communities can be a successful path to understand the ecology of microbial systems and improve biotechnological processes. Here, we developed a strategy to assemble a minimal and effective lignocellulolytic microbial consortium (MELMC) using a sequential combination of dilution-to-stimulation and dilution-to-extinction approaches. The consortium was retrieved from Andean forest soil and selected through incubation in liquid medium with a mixture of three types of agricultural plant residues. After the dilution-to-stimulation phase, approximately 50 bacterial sequence types, mostly belonging to the Sphingobacteriaceae, Enterobacteriaceae, Pseudomonadaceae, and Paenibacillaceae, were significantly enriched. The dilution-to-extinction method demonstrated that only eight of the bacterial sequence types were necessary to maintain microbial growth and plant biomass consumption. After subsequent stabilization, only two bacterial species (Pseudomonas sp. and Paenibacillus sp.) became highly abundant (>99%) within the MELMC, indicating that these are the key players in degradation. Differences in the composition of bacterial communities between biological replicates indicated that selection, sampling, and/or priority effects could shape the consortium structure. The MELMC can degrade up to ∼13% of corn stover, consuming mostly its (hemi)cellulosic fraction. Tests with chromogenic substrates showed that the MELMC secretes an array of endoenzymes able to degrade xylan, arabinoxylan, carboxymethyl cellulose, and wheat straw. Additionally, the metagenomic profile inferred from the phylogenetic composition along with an analysis of carbohydrate-active enzymes of 20 bacterial genomes support the potential of the MELMC to deconstruct plant polysaccharides. This capacity was mainly attributed to the presence of Paenibacillus sp. IMPORTANCE The significance of our study mainly lies in the development of a combined top-down enrichment strategy (i.e., dilution to stimulation coupled to dilution to extinction) to build a minimal and versatile lignocellulolytic microbial consortium. We demonstrated that mainly two selectively enriched bacterial species (Pseudomonas sp. and Paenibacillus sp.) are required to drive the effective degradation of plant polymers. Our findings can guide the design of a synthetic bacterial consortium that could improve saccharification (i.e., the release of sugars from agricultural plant residues) processes in biorefineries. In addition, they can help to expand our ecological understanding of plant biomass degradation in enriched bacterial systems.
Collapse
|
43
|
Nie Y, Wu X. Getting back to the nature of the microbial world: from the description and inductive reasoning to deductive study after 'meta-omics'. Microb Biotechnol 2021; 14:22-25. [PMID: 33166079 PMCID: PMC7888457 DOI: 10.1111/1751-7915.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022] Open
Abstract
'Omics' studies have by now deposited massive amounts of data into the databases, and it is now time to return to the question as to what can we actually learn from them. Increased application of the deductive approach in synthetic microbial ecology and synthetic microbiome research will undoubtedly provide exciting new opportunities for advancing our understanding of microbial ecology.
Collapse
Affiliation(s)
- Yong Nie
- College of EngineeringPeking UniversityBeijing100871China
| | - Xiao‐Lei Wu
- College of EngineeringPeking UniversityBeijing100871China
- Institute of Ocean ResearchPeking UniversityBeijing100871China
- Institute of EcologyPeking UniversityBeijing100871China
| |
Collapse
|
44
|
Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol 2021; 6:499-511. [PMID: 33526884 PMCID: PMC8007473 DOI: 10.1038/s41564-020-00861-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The herbivore digestive tract is home to a complex community of anaerobic microbes that work together to break down lignocellulose. These microbiota are an untapped resource of strains, pathways and enzymes that could be applied to convert plant waste into sugar substrates for green biotechnology. We carried out more than 400 parallel enrichment experiments from goat faeces to determine how substrate and antibiotic selection influence membership, activity, stability and chemical productivity of herbivore gut communities. We assembled 719 high-quality metagenome-assembled genomes (MAGs) that are unique at the species level. More than 90% of these MAGs are from previously unidentified herbivore gut microorganisms. Microbial consortia dominated by anaerobic fungi outperformed bacterially dominated consortia in terms of both methane production and extent of cellulose degradation, which indicates that fungi have an important role in methane release. Metabolic pathway reconstructions from MAGs of 737 bacteria, archaea and fungi suggest that cross-domain partnerships between fungi and methanogens enabled production of acetate, formate and methane, whereas bacterially dominated consortia mainly produced short-chain fatty acids, including propionate and butyrate. Analyses of carbohydrate-active enzyme domains present in each anaerobic consortium suggest that anaerobic bacteria and fungi employ mostly complementary hydrolytic strategies. The division of labour among herbivore anaerobes to degrade plant biomass could be harnessed for industrial bioprocessing.
Collapse
Affiliation(s)
- Xuefeng Peng
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.133342.40000 0004 1936 9676Marine Science Institute, University of California, Santa Barbara, CA USA
| | - St. Elmo Wilken
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Thomas S. Lankiewicz
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Sean P. Gilmore
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Jennifer L. Brown
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - John K. Henske
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Candice L. Swift
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Asaf Salamov
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Kerrie Barry
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Igor V. Grigoriev
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael K. Theodorou
- grid.417899.a0000 0001 2167 3798Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - David L. Valentine
- grid.133342.40000 0004 1936 9676Department of Earth Science, University of California, Santa Barbara, CA USA
| | - Michelle A. O’Malley
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
45
|
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K. Anaerobic Fungi: Past, Present, and Future. Front Microbiol 2020; 11:584893. [PMID: 33193229 PMCID: PMC7609409 DOI: 10.3389/fmicb.2020.584893] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.
Collapse
Affiliation(s)
- Matthias Hess
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shyam S. Paul
- Gut Microbiome Lab, ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Hyderabad, India
| | - Anil K. Puniya
- Anaerobic Microbiology Lab, ICAR-National Dairy Research Institute, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Claire Shaw
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Kateřina Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
46
|
Hauk P, Stephens K, Virgile C, VanArsdale E, Pottash AE, Schardt JS, Jay SM, Sintim HO, Bentley WE. Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli. ACS Synth Biol 2020; 9:2692-2702. [PMID: 32822530 DOI: 10.1021/acssynbio.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed a hybrid synthetic circuit that co-opts the genetic regulation of the native bacterial quorum sensing autoinducer-2 and imposes an extra external controller for maintaining tightly controlled gene expression. This dual-input genetic controller was mathematically modeled and, by design, can be operated in three modes: a constitutive mode that enables consistent and high levels of expression; a tightly repressed mode in which there is very little background expression; and an inducible mode in which concentrations of two signals (arabinose and autoinducer-2) determine the net amplification of the gene(s)-of-interest. We demonstrate the utility of the circuit for the controlled expression of human granulocyte macrophage colony stimulating factor in an engineered probiotic E. coli. This dual-input genetic controller is the first homologous AI-2 quorum sensing circuit that has the ability to be operated in three different modes. We believe it has the potential for wide-ranging biotechnological applications due its versatile features.
Collapse
Affiliation(s)
- Pricila Hauk
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Chelsea Virgile
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Eric VanArsdale
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - John S. Schardt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Herman O. Sintim
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
47
|
McClure R, Naylor D, Farris Y, Davison M, Fansler SJ, Hofmockel KS, Jansson JK. Development and Analysis of a Stable, Reduced Complexity Model Soil Microbiome. Front Microbiol 2020; 11:1987. [PMID: 32983014 PMCID: PMC7479069 DOI: 10.3389/fmicb.2020.01987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The soil microbiome is central to the cycling of carbon and other nutrients and to the promotion of plant growth. Despite its importance, analysis of the soil microbiome is difficult due to its sheer complexity, with thousands of interacting species. Here, we reduced this complexity by developing model soil microbial consortia that are simpler and more amenable to experimental analysis but still represent important microbial functions of the native soil ecosystem. Samples were collected from an arid grassland soil and microbial communities (consisting mainly of bacterial species) were enriched on agar plates containing chitin as the main carbon source. Chitin was chosen because it is an abundant carbon and nitrogen polymer in soil that often requires the coordinated action of several microorganisms for complete metabolic degradation. Several soil consortia were derived that had tractable richness (30–50 OTUs) with diverse phyla representative of the native soil, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. The resulting consortia could be stored as glycerol or lyophilized stocks at −80°C and revived while retaining community composition, greatly increasing their use as tools for the research community at large. One of the consortia that was particularly stable was chosen as a model soil consortium (MSC-1) for further analysis. MSC-1 species interactions were studied using both pairwise co-cultivation in liquid media and during growth in soil under several perturbations. Co-abundance analyses highlighted interspecies interactions and helped to define keystone species, including Mycobacterium, Rhodococcus, and Rhizobiales taxa. These experiments demonstrate the success of an approach based on naturally enriching a community of interacting species that can be stored, revived, and shared. The knowledge gained from querying these communities and their interactions will enable better understanding of the soil microbiome and the roles these interactions play in this environment.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Dan Naylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Michelle Davison
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sarah J Fansler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
48
|
Jiménez DJ, Wang Y, Chaib de Mares M, Cortes-Tolalpa L, Mertens JA, Hector RE, Lin J, Johnson J, Lipzen A, Barry K, Mondo SJ, Grigoriev IV, Nichols NN, van Elsas JD. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiol Ecol 2020; 96:5643886. [PMID: 31769802 DOI: 10.1093/femsec/fiz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Yanfang Wang
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Maryam Chaib de Mares
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Larisa Cortes-Tolalpa
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Junyan Lin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720-3102, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| |
Collapse
|
49
|
An Arduino based automatic pressure evaluation system to quantify growth of non‐model anaerobes in culture. AIChE J 2020. [DOI: 10.1002/aic.16540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Whitehead TA, Banta S, Bentley WE, Betenbaugh MJ, Chan C, Clark DS, Hoesli CA, Jewett MC, Junker B, Koffas M, Kshirsagar R, Lewis A, Li CT, Maranas C, Terry Papoutsakis E, Prather KLJ, Schaffer S, Segatori L, Wheeldon I. The importance and future of biochemical engineering. Biotechnol Bioeng 2020; 117:2305-2318. [PMID: 32343367 DOI: 10.1002/bit.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Today's Biochemical Engineer may contribute to advances in a wide range of technical areas. The recent Biochemical and Molecular Engineering XXI conference focused on "The Next Generation of Biochemical and Molecular Engineering: The role of emerging technologies in tomorrow's products and processes". On the basis of topical discussions at this conference, this perspective synthesizes one vision on where investment in research areas is needed for biotechnology to continue contributing to some of the world's grand challenges.
Collapse
Affiliation(s)
- Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - Corinne A Hoesli
- Department of Chemical Engineering & Department of Biological and Biomedical Engineering, McGill University, Montreal, Québec, Canada
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| | - Beth Junker
- BioProcess Advantage LLC, Middesex, New Jersey
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Chien-Ting Li
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Costas Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - E Terry Papoutsakis
- Department of Chemical & Biomolecular Engineering & the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Laura Segatori
- Department of Bioengineering, Rice University, Houston, Texas
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| |
Collapse
|