1
|
Tan Z, Li J, Hou J, Gonzalez R. Designing artificial pathways for improving chemical production. Biotechnol Adv 2023; 64:108119. [PMID: 36764336 DOI: 10.1016/j.biotechadv.2023.108119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Metabolic engineering exploits manipulation of catalytic and regulatory elements to improve a specific function of the host cell, often the synthesis of interesting chemicals. Although naturally occurring pathways are significant resources for metabolic engineering, these pathways are frequently inefficient and suffer from a series of inherent drawbacks. Designing artificial pathways in a rational manner provides a promising alternative for chemicals production. However, the entry barrier of designing artificial pathway is relatively high, which requires researchers a comprehensive and deep understanding of physical, chemical and biological principles. On the other hand, the designed artificial pathways frequently suffer from low efficiencies, which impair their further applications in host cells. Here, we illustrate the concept and basic workflow of retrobiosynthesis in designing artificial pathways, as well as the most currently used methods including the knowledge- and computer-based approaches. Then, we discuss how to obtain desired enzymes for novel biochemistries, and how to trim the initially designed artificial pathways for further improving their functionalities. Finally, we summarize the current applications of artificial pathways from feedstocks utilization to various products synthesis, as well as our future perspectives on designing artificial pathways.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Mohideen FI, Nguyen LH, Richard JD, Ouadhi S, Kwan DH. In Vitro Reconstitution of the dTDP-l-Daunosamine Biosynthetic Pathway Provides Insights into Anthracycline Glycosylation. ACS Chem Biol 2022; 17:3331-3340. [PMID: 34751552 DOI: 10.1021/acschembio.1c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many small molecule natural products are decorated with sugar moieties that are essential for their biological activity. A considerable number of natural product glycosides and their derivatives are clinically important therapeutics. Anthracyclines like daunorubicin and doxorubicin are examples of valuable glycosylated natural products used in medicine as potent anticancer agents. The sugar moiety, l-daunosamine (a highly modified deoxyhexose), plays a key role in the bioactivity of these molecules as evidenced by semisynthetic anthracycline derivatives such as epirubicin, wherein alteration in the configuration of a single stereocenter of the sugar unit generates a chemotherapeutic drug with lower cardiotoxicity. The nucleotide activated sugar donor that provides the l-daunosamine group for attachment to the natural product scaffold in the biosynthesis of these anthracyclines is dTDP-l-daunosamine. In an in vitro system, we have reconstituted the enzymes in the daunorubicin/doxorubicin pathway involved in the biosynthesis of dTDP-l-daunosamine. Through the study of the enzymatic steps in this reconstituted pathway, we have gained several insights into the assembly of this precursor including the identification of a major bottleneck and competing reactions. We carried out kinetic analysis of the aminotransferase that catalyzes a limiting step of the pathway. Our in vitro reconstituted pathway also provided a platform to test the combinatorial enzymatic synthesis of other dTDP-activated deoxyhexoses as potential tools for "glycodiversification" of natural products. To this end, we replaced the stereospecific ketoreductase that acts in the last step of dTDP-l-daunosamine biosynthesis with an enzyme from a heterologous pathway with opposite stereospecificity and found that it is active in the in vitro pathway, demonstrating the potential for the enzymatic synthesis of nucleotide-activated sugars with regio- and stereospecific tailoring.
Collapse
Affiliation(s)
- F Ifthiha Mohideen
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6
| | - Lan Huong Nguyen
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6
| | - Joël D Richard
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Sara Ouadhi
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6.,Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6
| | - David H Kwan
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, Quebec, Canada G1V 0A6.,Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
3
|
Cui L, Cui A, Li Q, Yang L, Liu H, Shao W, Feng Y. Molecular Evolution of an Aminotransferase Based on Substrate–Enzyme Binding Energy Analysis for Efficient Valienamine Synthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anqi Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qitong Li
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lezhou Yang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab Eng 2021; 67:198-215. [PMID: 34166765 DOI: 10.1016/j.ymben.2021.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.
Collapse
|