1
|
Hilzinger JM, Friedline S, Sivanandan D, Cheng Y, Yamazaki S, Clark DS, Skerker JM, Arkin AP. Acetaminophen production in the edible, filamentous cyanobacterium Arthrospira platensis. Biotechnol Bioeng 2025; 122:44-52. [PMID: 39392130 PMCID: PMC11632167 DOI: 10.1002/bit.28858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Spirulina is the common name for the edible, nonheterocystous, filamentous cyanobacterium Arthrospira platensis that is grown industrially as a food supplement, animal feedstock, and pigment source. Although there are many applications for engineering this organism, until recently no genetic tools or reproducible transformation methods have been published. While recent work showed the production of a diversity of proteins in A. platensis, including single-domain antibodies for oral delivery, there remains a need for a modular, characterized genetic toolkit. Here, we independently establish a reproducible method for the transformation of A. platensis and engineer this bacterium to produce acetaminophen as proof-of-concept for small molecule production in an edible host. This work opens A. platensis to the wider scientific community for future engineering as a functional food for nutritional enhancement, modification of organoleptic traits, and production of pharmaceuticals for oral delivery.
Collapse
Affiliation(s)
- Jacob M. Hilzinger
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Skyler Friedline
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Divya Sivanandan
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Ya‐Fang Cheng
- QB3‐BerkeleyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Shunsuke Yamazaki
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Ajinomoto Co., Inc.KawasakiKanagawaJapan
| | - Douglas S. Clark
- Department of Chemical and Biomolecular EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National, LaboratoryBerkeleyCaliforniaUSA
| | - Jeffrey M. Skerker
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Adam P. Arkin
- Department of Biological EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Doello S, Shvarev D, Theune M, Sauerwein J, Klon A, Keskin E, Boehm M, Gutekunst K, Forchhammer K. Structural basis of the allosteric regulation of cyanobacterial glucose-6-phosphate dehydrogenase by the redox sensor OpcA. Proc Natl Acad Sci U S A 2024; 121:e2411604121. [PMID: 39642196 DOI: 10.1073/pnas.2411604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/07/2024] [Indexed: 12/08/2024] Open
Abstract
The oxidative pentose phosphate (OPP) pathway is a fundamental carbon catabolic route for generating reducing power and metabolic intermediates for biosynthetic processes. In addition, its first two reactions form the OPP shunt, which replenishes the Calvin-Benson cycle under certain conditions. Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first and rate-limiting reaction of this metabolic route. In photosynthetic organisms, G6PDH is redox-regulated to allow fine-tuning and to prevent futile cycles while carbon is being fixed. In cyanobacteria, regulation of G6PDH requires the redox protein OpcA, but the underlying molecular mechanisms behind this allosteric activation remain elusive. Here, we used enzymatic assays and in vivo interaction analyses to show that OpcA binds G6PDH under different environmental conditions. However, complex formation enhances G6PDH activity when OpcA is oxidized and inhibits it when OpcA is reduced. To understand the molecular basis of this regulation, we used cryogenic electron microscopy to determine the structure of Synechocystis G6PDH and the G6PDH-OpcA complex. OpcA binds the G6PDH tetramer and induces conformational changes in the active site of G6PDH. The redox sensitivity of OpcA is achieved by intramolecular disulfide bridge formation, which influences the allosteric regulation of G6PDH. In vitro assays reveal that the level of G6PDH activation depends on the number of bound OpcA molecules, which implies that this mechanism allows delicate fine-tuning. Our findings unveil a unique molecular mechanism governing the regulation of the OPP in Synechocystis.
Collapse
Affiliation(s)
- Sofia Doello
- Interfaculty Institute for Microbiology and Infection Medicine, Microbiology and Organismic Interactions, University of Tübingen, Tübingen 72076, Germany
| | - Dmitry Shvarev
- Department of Structural Biology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics Osnabrück, University of Osnabrück, Osnabrück 49076, Germany
| | - Marius Theune
- Molecular Plant Physiology, Bioenergetics in Photoautotrophs, Institute for Biology, University of Kassel, Kassel 34132, Germany
| | - Jakob Sauerwein
- Interfaculty Institute for Microbiology and Infection Medicine, Microbiology and Organismic Interactions, University of Tübingen, Tübingen 72076, Germany
| | - Alexander Klon
- Interfaculty Institute for Microbiology and Infection Medicine, Microbiology and Organismic Interactions, University of Tübingen, Tübingen 72076, Germany
| | - Erva Keskin
- Interfaculty Institute for Microbiology and Infection Medicine, Microbiology and Organismic Interactions, University of Tübingen, Tübingen 72076, Germany
- Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
| | - Marko Boehm
- Molecular Plant Physiology, Bioenergetics in Photoautotrophs, Institute for Biology, University of Kassel, Kassel 34132, Germany
| | - Kirstin Gutekunst
- Molecular Plant Physiology, Bioenergetics in Photoautotrophs, Institute for Biology, University of Kassel, Kassel 34132, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Microbiology and Organismic Interactions, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
3
|
Yang Q, Luan M, Wang M, Zhang Y, Liu G, Niu G. Characterizing and Engineering Rhamnose-Inducible Regulatory Systems for Dynamic Control of Metabolic Pathways in Streptomyces. ACS Synth Biol 2024; 13:3461-3470. [PMID: 39377938 DOI: 10.1021/acssynbio.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Fine-tuning gene expression is of great interest for synthetic biotechnological applications. This is particularly true for the genus Streptomyces, which is well-known as a prolific producer of diverse natural products. Currently, there is an increasing demand to develop effective gene induction systems. In this study, bioinformatic analysis revealed a putative rhamnose catabolic pathway in multiple Streptomyces species, and the removal of the pathway in the model organism Streptomyces coelicolor impaired its growth on minimal media with rhamnose as the sole carbon source. To unravel the regulatory mechanism of RhaR, a LacI family transcriptional regulator of the catabolic pathway, electrophoretic mobility shift assays (EMSAs) were performed to identify potential target promoters. Multiple sequence alignments retrieved a consensus sequence of the RhaR operator (rhaO). A synthetic biology-based strategy was then deployed to build rhamnose-inducible regulatory systems, referred to as rhaRS1 and rhaRS2, by assembling the repressor/operator pair RhaR/rhaO with the well-defined constitutive kasO* promoter. Both rhaRS1 and rhaRS2 exhibited a high level of induced reporter activity, with no leaky expression. rhaRS2 has been proven successful for the programmable production of actinorhodin and violacein in Streptomyces. Our study expanded the toolkit of inducible regulatory systems that will be broadly applicable to many other Streptomyces species.
Collapse
Affiliation(s)
- Qian Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mengao Luan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yuxin Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoqiang Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Victoria AJ, Selão TT, Moreno-Cabezuelo JÁ, Mills LA, Gale GAR, Lea-Smith DJ, McCormick AJ. A toolbox to engineer the highly productive cyanobacterium Synechococcus sp. PCC 11901. PLANT PHYSIOLOGY 2024; 196:1674-1690. [PMID: 38713768 PMCID: PMC11444289 DOI: 10.1093/plphys/kiae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
Synechococcus sp. PCC 11901 (PCC 11901) is a fast-growing marine cyanobacterial strain that has a capacity for sustained biomass accumulation to very high cell densities, comparable to that achieved by commercially relevant heterotrophic organisms. However, genetic tools to engineer PCC 11901 for biotechnology applications are limited. Here we describe a suite of tools based on the CyanoGate MoClo system to unlock the engineering potential of PCC 11901. First, we characterized neutral sites suitable for stable genomic integration that do not affect growth even at high cell densities. Second, we tested a suite of constitutive promoters, terminators, and inducible promoters including a 2,4-diacetylphloroglucinol (DAPG)-inducible PhlF repressor system, which has not previously been demonstrated in cyanobacteria and showed tight regulation and a 228-fold dynamic range of induction. Lastly, we developed a DAPG-inducible dCas9-based CRISPR interference (CRISPRi) system and a modular method to generate markerless mutants using CRISPR-Cas12a. Based on our findings, PCC 11901 is highly responsive to CRISPRi-based repression and showed high efficiencies for single insertion (31% to 81%) and multiplex double insertion (25%) genome editing with Cas12a. We envision that these tools will lay the foundations for the adoption of PCC 11901 as a robust model strain for engineering biology and green biotechnology.
Collapse
Affiliation(s)
- Angelo J Victoria
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Tiago Toscano Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
5
|
Kirst H. New molecular tools for the next generation of solar microbial cell factories. PLANT PHYSIOLOGY 2024; 196:695-696. [PMID: 39139084 PMCID: PMC11444285 DOI: 10.1093/plphys/kiae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Henning Kirst
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| |
Collapse
|
6
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
7
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
8
|
Tüllinghoff A, Toepel J, Bühler B. Enlighting Electron Routes In Oxyfunctionalizing Synechocystis sp. PCC 6803. Chembiochem 2024; 25:e202300475. [PMID: 37994522 DOI: 10.1002/cbic.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Phototrophic microorganisms, like cyanobacteria, are gaining attention as host organisms for biocatalytic processes with light as energy source and water as electron source. Redox enzymes, especially oxygenases, can profit from in-situ supply of co-substrates, i. e., reduction equivalents and O2 , by the photosynthetic light reaction. The electron transfer downstream of PS I to heterologous electron consuming enzymes in principle can involve NADPH, NADH, and/or ferredoxin, whereas most direct and efficient transfer is desirable. Here, we use the model organism Synechocystis sp. PCC 6803 to investigate, to what extent host and/or heterologous constituents are involved in electron transfer to a heterologous cytochrome P450 monooxygenase from Acidovorax sp. CHX100. Interestingly, in this highly active light-fueled cycloalkane hydroxylating biocatalyst, host-intrinsic enzymes were found capable of completely substituting the function of the Acidovorax ferredoxin reductase. To a certain extent (20 %), this also was true for the Acidovorax ferredoxin. These results indicate the presence of a versatile set of electron carriers in cyanobacteria, enabling efficient and direct coupling of electron consuming reactions to photosynthetic water oxidation. This will both simplify and promote the use of phototrophic microorganisms for sustainable production processes.
Collapse
Affiliation(s)
- Adrian Tüllinghoff
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
9
|
Okay S. Fine-Tuning Gene Expression in Bacteria by Synthetic Promoters. Methods Mol Biol 2024; 2844:179-195. [PMID: 39068340 DOI: 10.1007/978-1-0716-4063-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are key genetic elements in the initiation and regulation of gene expression. A limited number of natural promoters has been described for the control of gene expression in synthetic biology applications. Therefore, synthetic promoters have been developed to fine-tune the transcription for the desired amount of gene product. Mostly, synthetic promoters are characterized using promoter libraries that are constructed via mutagenesis of promoter sequences. The strength of promoters in the library is determined according to the expression of a reporter gene such as gfp encoding green fluorescent protein. Gene expression can be controlled using inducers. The majority of the studies on gram-negative bacteria are conducted using the expression system of the model organism Escherichia coli while that of the model organism Bacillus subtilis is mostly used in the studies on gram-positive bacteria. Additionally, synthetic promoters for the cyanobacteria, which are phototrophic microorganisms, are evaluated, especially using the model cyanobacterium Synechocystis sp. PCC 6803. Moreover, a variety of algorithms based on machine learning methods were developed to characterize the features of promoter elements. Some of these in silico models were verified using in vitro or in vivo experiments. Identification of novel synthetic promoters with improved features compared to natural ones contributes much to the synthetic biology approaches in terms of fine-tuning gene expression.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
10
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
11
|
Mager M, Pineda Hernandez H, Brandenburg F, López-Maury L, McCormick AJ, Nürnberg DJ, Orthwein T, Russo DA, Victoria AJ, Wang X, Zedler JAZ, Branco dos Santos F, Schmelling NM. Interlaboratory Reproducibility in Growth and Reporter Expression in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2023; 12:1823-1835. [PMID: 37246820 PMCID: PMC10278186 DOI: 10.1021/acssynbio.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 05/30/2023]
Abstract
In recent years, a plethora of new synthetic biology tools for use in cyanobacteria have been published; however, their reported characterizations often cannot be reproduced, greatly limiting the comparability of results and hindering their applicability. In this interlaboratory study, the reproducibility of a standard microbiological experiment for the cyanobacterial model organism Synechocystis sp. PCC 6803 was assessed. Participants from eight different laboratories quantified the fluorescence intensity of mVENUS as a proxy for the transcription activity of the three promoters PJ23100, PrhaBAD, and PpetE over time. In addition, growth rates were measured to compare growth conditions between laboratories. By establishing strict and standardized laboratory protocols, reflecting frequently reported methods, we aimed to identify issues with state-of-the-art procedures and assess their effect on reproducibility. Significant differences in spectrophotometer measurements across laboratories from identical samples were found, suggesting that commonly used reporting practices of optical density values need to be supplemented by cell count or biomass measurements. Further, despite standardized light intensity in the incubators, significantly different growth rates between incubators used in this study were observed, highlighting the need for additional reporting requirements of growth conditions for phototrophic organisms beyond the light intensity and CO2 supply. Despite the use of a regulatory system orthogonal to Synechocystis sp. PCC 6803, PrhaBAD, and a high level of protocol standardization, ∼32% variation in promoter activity under induced conditions was found across laboratories, suggesting that the reproducibility of other data in the field of cyanobacteria might be affected similarly.
Collapse
Affiliation(s)
- Maurice Mager
- Institute
for Synthetic Microbiology, Heinrich Heine
University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Hugo Pineda Hernandez
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences,
Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Fabian Brandenburg
- Helmholtz
Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Luis López-Maury
- Instituto
de Bioquímica Vegetal y Fotosíntesis, University of Seville − CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento
de Bioquímica Vegetal y Biología Molecular, Facultad
de Biología, University of Seville, Avenida Reina Mercedes, 41012 Sevilla, Spain
| | - Alistair J. McCormick
- Institute
of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, 1.04 Daniel Rutherford Building, King’s
Buildings, EH9 3BF Edinburgh, U.K.
| | - Dennis J. Nürnberg
- Department
of Physics, Experimental Biophysics, Freie
University Berlin, Arnimallee
14, 14195 Berlin, Germany
- Dahlem
Centre of Plant Sciences, Freie Universität
Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Tim Orthwein
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - David A. Russo
- Institute
for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Angelo Joshua Victoria
- Institute
of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, 1.04 Daniel Rutherford Building, King’s
Buildings, EH9 3BF Edinburgh, U.K.
| | - Xiaoran Wang
- Department
of Physics, Experimental Biophysics, Freie
University Berlin, Arnimallee
14, 14195 Berlin, Germany
| | - Julie A. Z. Zedler
- Matthias
Schleiden Institute for Genetics, Bioinformatics and Molecular Botany,
Synthetic Biology of Photosynthetic Organisms, Friedrich Schiller University Jena, Dornburgerstrasse 159, 07743 Jena, Germany
| | - Filipe Branco dos Santos
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences,
Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Nicolas M. Schmelling
- Institute
for Synthetic Microbiology, Heinrich Heine
University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| |
Collapse
|
12
|
Germann AT, Nakielski A, Dietsch M, Petzel T, Moser D, Triesch S, Westhoff P, Axmann IM. A systematic overexpression approach reveals native targets to increase squalene production in Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2023; 14:1024981. [PMID: 37324717 PMCID: PMC10266222 DOI: 10.3389/fpls.2023.1024981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.
Collapse
Affiliation(s)
- Anna T. Germann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tim Petzel
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Moser
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
14
|
Opel F, Itzenhäuser MA, Wehner I, Lupacchini S, Lauterbach L, Lenz O, Klähn S. Toward a synthetic hydrogen sensor in cyanobacteria: Functional production of an oxygen-tolerant regulatory hydrogenase in Synechocystis sp. PCC 6803. Front Microbiol 2023; 14:1122078. [PMID: 37032909 PMCID: PMC10073562 DOI: 10.3389/fmicb.2023.1122078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Cyanobacteria have raised great interest in biotechnology, e.g., for the sustainable production of molecular hydrogen (H2) using electrons from water oxidation. However, this is hampered by various constraints. For example, H2-producing enzymes compete with primary metabolism for electrons and are usually inhibited by molecular oxygen (O2). In addition, there are a number of other constraints, some of which are unknown, requiring unbiased screening and systematic engineering approaches to improve the H2 yield. Here, we introduced the regulatory [NiFe]-hydrogenase (RH) of Cupriavidus necator (formerly Ralstonia eutropha) H16 into the cyanobacterial model strain Synechocystis sp. PCC 6803. In its natural host, the RH serves as a molecular H2 sensor initiating a signal cascade to express hydrogenase-related genes when no additional energy source other than H2 is available. Unlike most hydrogenases, the C. necator enzymes are O2-tolerant, allowing their efficient utilization in an oxygenic phototroph. Similar to C. necator, the RH produced in Synechocystis showed distinct H2 oxidation activity, confirming that it can be properly matured and assembled under photoautotrophic, i.e., oxygen-evolving conditions. Although the functional H2-sensing cascade has not yet been established in Synechocystis yet, we utilized the associated two-component system consisting of a histidine kinase and a response regulator to drive and modulate the expression of a superfolder gfp gene in Escherichia coli. This demonstrates that all components of the H2-dependent signal cascade can be functionally implemented in heterologous hosts. Thus, this work provides the basis for the development of an intrinsic H2 biosensor within a cyanobacterial cell that could be used to probe the effects of random mutagenesis and systematically identify promising genetic configurations to enable continuous and high-yield production of H2 via oxygenic photosynthesis.
Collapse
Affiliation(s)
- Franz Opel
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Isabel Wehner
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Sara Lupacchini
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Lars Lauterbach
- Institute of Applied Microbiology (iAMB), RWTH Aachen University, Aachen, Germany
| | - Oliver Lenz
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- *Correspondence: Stephan Klähn,
| |
Collapse
|
15
|
Behle A, Dietsch M, Goldschmidt L, Murugathas W, Berwanger L, Burmester J, Yao L, Brandt D, Busche T, Kalinowski J, Hudson E, Ebenhöh O, Axmann I, Machné R. Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis. Nucleic Acids Res 2022; 50:12790-12808. [PMID: 36533444 PMCID: PMC9825172 DOI: 10.1093/nar/gkac1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
In cyanobacteria DNA supercoiling varies over the diurnal cycle and is integrated with temporal programs of transcription and replication. We manipulated DNA supercoiling in Synechocystis sp. PCC 6803 by CRISPRi-based knockdown of gyrase subunits and overexpression of topoisomerase I (TopoI). Cell division was blocked but cell growth continued in all strains. The small endogenous plasmids were only transiently relaxed, then became strongly supercoiled in the TopoI overexpression strain. Transcript abundances showed a pronounced 5'/3' gradient along transcription units, incl. the rRNA genes, in the gyrase knockdown strains. These observations are consistent with the basic tenets of the homeostasis and twin-domain models of supercoiling in bacteria. TopoI induction initially led to downregulation of G+C-rich and upregulation of A+T-rich genes. The transcriptional response quickly bifurcated into six groups which overlap with diurnally co-expressed gene groups. Each group shows distinct deviations from a common core promoter structure, where helically phased A-tracts are in phase with the transcription start site. Together, our data show that major co-expression groups (regulons) in Synechocystis all respond differentially to DNA supercoiling, and suggest to re-evaluate the long-standing question of the role of A-tracts in bacterial promoters.
Collapse
Affiliation(s)
| | | | - Louis Goldschmidt
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wandana Murugathas
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz C Berwanger
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jonas Burmester
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lun Yao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - David Brandt
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Oliver Ebenhöh
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ilka M Axmann
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rainer Machné
- To whom correspondence should be addressed. Tel: +49 211 81 12923;
| |
Collapse
|
16
|
Malihan‐Yap L, Grimm HC, Kourist R. Recent Advances in Cyanobacterial Biotransformations. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lenny Malihan‐Yap
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Hanna C. Grimm
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Robert Kourist
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
- ACIB GmbH 8010 Graz Austria
| |
Collapse
|
17
|
Bourgade B, Stensjö K. Synthetic biology in marine cyanobacteria: Advances and challenges. Front Microbiol 2022; 13:994365. [PMID: 36188008 PMCID: PMC9522894 DOI: 10.3389/fmicb.2022.994365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
The current economic and environmental context requests an accelerating development of sustainable alternatives for the production of various target compounds. Biological processes offer viable solutions and have gained renewed interest in the recent years. For example, photosynthetic chassis organisms are particularly promising for bioprocesses, as they do not require biomass-derived carbon sources and contribute to atmospheric CO2 fixation, therefore supporting climate change mitigation. Marine cyanobacteria are of particular interest for biotechnology applications, thanks to their rich diversity, their robustness to environmental changes, and their metabolic capabilities with potential for therapeutics and chemicals production without requiring freshwater. The additional cyanobacterial properties, such as efficient photosynthesis, are also highly beneficial for biotechnological processes. Due to their capabilities, research efforts have developed several genetic tools for direct metabolic engineering applications. While progress toward a robust genetic toolkit is continuously achieved, further work is still needed to routinely modify these species and unlock their full potential for industrial applications. In contrast to the understudied marine cyanobacteria, genetic engineering and synthetic biology in freshwater cyanobacteria are currently more advanced with a variety of tools already optimized. This mini-review will explore the opportunities provided by marine cyanobacteria for a greener future. A short discussion will cover the advances and challenges regarding genetic engineering and synthetic biology in marine cyanobacteria, followed by a parallel with freshwater cyanobacteria and their current genetic availability to guide the prospect for marine species.
Collapse
Affiliation(s)
- Barbara Bourgade
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Opel F, Siebert NA, Klatt S, Tüllinghoff A, Hantke JG, Toepel J, Bühler B, Nürnberg DJ, Klähn S. Generation of Synthetic Shuttle Vectors Enabling Modular Genetic Engineering of Cyanobacteria. ACS Synth Biol 2022; 11:1758-1771. [PMID: 35405070 DOI: 10.1021/acssynbio.1c00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria have raised great interest in biotechnology due to their potential for a sustainable, photosynthesis-driven production of fuels and value-added chemicals. This has led to a concomitant development of molecular tools to engineer the metabolism of those organisms. In this regard, however, even cyanobacterial model strains lag behind compared to their heterotrophic counterparts. For instance, replicative shuttle vectors that allow gene transfer independent of recombination into host DNA are still scarce. Here, we introduce the pSOMA shuttle vector series comprising 10 synthetic plasmids for comprehensive genetic engineering of Synechocystis sp. PCC 6803. The series is based on the small endogenous plasmids pCA2.4 and pCB2.4, each combined with a replicon from Escherichia coli, different selection markers as well as features facilitating molecular cloning and the insulated introduction of gene expression cassettes. We made use of genes encoding green fluorescent protein (GFP) and a Baeyer-Villiger monooxygenase (BVMO) to demonstrate functional gene expression from the pSOMA plasmids in vivo. Moreover, we demonstrate the expression of distinct heterologous genes from individual plasmids maintained in the same strain and thereby confirmed compatibility between the two pSOMA subseries as well as with derivatives of the broad-host-range plasmid RSF1010. We also show that gene transfer into the filamentous model strain Anabaena sp. PCC 7120 is generally possible, which is encouraging to further explore the range of cyanobacterial host species that could be engineered via pSOMA plasmids. Altogether, the pSOMA shuttle vector series displays an attractive alternative to existing plasmid series and thus meets the current demand for the introduction of complex genetic setups and to perform extensive metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Franz Opel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Nina A. Siebert
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Klatt
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Adrian Tüllinghoff
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Janis G. Hantke
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jörg Toepel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Stephan Klähn
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
19
|
Zhuang X, Zhang Y, Xiao AF, Zhang A, Fang B. Applications of Synthetic Biotechnology on Carbon Neutrality Research: A Review on Electrically Driven Microbial and Enzyme Engineering. Front Bioeng Biotechnol 2022; 10:826008. [PMID: 35145960 PMCID: PMC8822124 DOI: 10.3389/fbioe.2022.826008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
With the advancement of science, technology, and productivity, the rapid development of industrial production, transportation, and the exploitation of fossil fuels has gradually led to the accumulation of greenhouse gases and deterioration of global warming. Carbon neutrality is a balance between absorption and emissions achieved by minimizing carbon dioxide (CO2) emissions from human social productive activity through a series of initiatives, including energy substitution and energy efficiency improvement. Then CO2 was offset through forest carbon sequestration and captured at last. Therefore, efficiently reducing CO2 emissions and enhancing CO2 capture are a matter of great urgency. Because many species have the natural CO2 capture properties, more and more scientists focus their attention on developing the biological carbon sequestration technique and further combine with synthetic biotechnology and electricity. In this article, the advances of the synthetic biotechnology method for the most promising organisms were reviewed, such as cyanobacteria, Escherichia coli, and yeast, in which the metabolic pathways were reconstructed to enhance the efficiency of CO2 capture and product synthesis. Furthermore, the electrically driven microbial and enzyme engineering processes are also summarized, in which the critical role and principle of electricity in the process of CO2 capture are canvassed. This review provides detailed summary and analysis of CO2 capture through synthetic biotechnology, which also pave the way for implementing electrically driven combined strategies.
Collapse
Affiliation(s)
- Xiaoyan Zhuang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Yonghui Zhang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - An-Feng Xiao
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Aihui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Baishan Fang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
21
|
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. BIORESOURCE TECHNOLOGY 2022; 344:126196. [PMID: 34710610 DOI: 10.1016/j.biortech.2021.126196] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics, an essential tool in modern synthetic biology based on the design-build-test-learn platform, is useful for obtaining a detailed understanding of cellular metabolic mechanisms through comprehensive analyses of the metabolite pool size and its dynamic changes. Metabolomics is critical to the design of a rational metabolic engineering strategy by determining the rate-limiting reaction and assimilated carbon distribution in a biosynthetic pathway of interest. Microalgae and cyanobacteria are promising photosynthetic producers of biofuels and bio-based chemicals, with high potential for developing a bioeconomic society through bio-based carbon neutral manufacturing. Metabolomics technologies optimized for photosynthetic organisms have been developed and utilized in various microalgal and cyanobacterial species. This review provides a concise overview of recent achievements in photosynthetic metabolomics, emphasizing the importance of microalgal and cyanobacterial cell factories that satisfy industrial requirements.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
22
|
Abstract
Genetic engineering of cyanobacteria is currently limited to genomic integration via homologous recombination and RSF1010-based conjugative vector systems. Here, we introduce a rationally designed conjugative vector with two BioBrick-based cloning sites which enables facilitated and modular cloning. This streamlined vector is suitable for a variety of synthetic biology applications, such as expression of multiple enzymes from metabolic pathways for the production of biofuels or secondary metabolites, or screening of modular parts such as promoters, further facilitating applications to improve crop plants using synthetic biology. Finally, we present a general approach to cloning of constructs, as well as detailed protocols for conjugation and culturing of strains carrying said constructs.
Collapse
Affiliation(s)
- Anna Behle
- Department of Biology, Institute for Synthetic Microbiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ilka M Axmann
- Department of Biology, Institute for Synthetic Microbiology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
23
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Dietsch M, Behle A, Westhoff P, Axmann IM. Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene. Metab Eng Commun 2021; 13:e00178. [PMID: 34466381 PMCID: PMC8382996 DOI: 10.1016/j.mec.2021.e00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Cyanobacteria are extremely adaptable, fast-growing, solar-powered cell factories that, like plants, are able to convert carbon dioxide into sugar and oxygen and thereby produce a large number of important compounds. Due to their unique phototrophy-associated physiological properties, i.e. naturally occurring isoprenoid metabolic pathway, they represent a highly promising platform for terpenoid biosynthesis. Here, we implemented a carefully devised engineering strategy to boost the biosynthesis of commercially attractive plant sequiterpenes, in particular valencene. Sesquiterpenes are a diverse group of bioactive metabolites, mainly produced in higher plants, but with often low concentrations and expensive downstream extraction. In this work we successfully demonstrate a multi-component engineering approach towards the photosynthetic production of valencene in the cyanobacterium Synechocystis sp. PCC 6803. First, we improved the flux towards valencene by markerless genomic deletions of shc and sqs. Secondly, we downregulated the formation of carotenoids, which are essential for viability of the cell, using CRISPRi on crtE. Finally, we intended to increase the spatial proximity of the two enzymes, ispA and CnVS, involved in valencene formation by creating an operon construct, as well as a fusion protein. Combining the most successful strategies resulted in a valencene production of 19 mg/g DCW in Synechocystis. In this work, we have devised a useful platform for future engineering steps.
Collapse
Affiliation(s)
- Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Behle
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Mittermair S, Lakatos G, Nicoletti C, Ranglová K, Manoel JC, Grivalský T, Kozhan DM, Masojídek J, Richter J. Impact of glgA1, glgA2 or glgC overexpression on growth and glycogen production in Synechocystis sp. PCC 6803. J Biotechnol 2021; 340:47-56. [PMID: 34481001 DOI: 10.1016/j.jbiotec.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Low production rates are still one limiting factor for the industrial climate-neutral production of biovaluable compounds in cyanobacteria. Next to optimized cultivation conditions, new production strategies are required. Hence, the use of established molecular tools could lead to increased product yields in the cyanobacterial model organism Synechocystis sp. PCC6803. Its main storage compound glycogen was chosen to be increased by the use of these tools. In this study, the three genes glgC, glgA1 and glgA2, which are part of the glycogen synthesis pathway, were combined with the Pcpc560 promoter and the neutral cloning site NSC1. The complete genome integration, protein formation, biomass production and glycogen accumulation were determined to select the most productive transformants. The overexpression of glgA2 did not increase the biomass or glycogen production in short-term trials compared to the other two genes but caused transformants death in long-term trials. The transformants glgA1_11 and glgC_2 showed significantly increased biomass (1.6-fold - 1.7-fold) and glycogen production (3.5-fold - 4-fold) compared to the wild type after 96 h making them a promising energy source for further applications. Those could include for example a two-stage production process, with first energy production (glycogen) and second increased product formation (e.g. ethanol).
Collapse
Affiliation(s)
- Sandra Mittermair
- Department of Biology and Chemistry, AG Biosciences, University of Applied Sciences Upper Austria, Roseggerstraße 15, 4600 Wels, Austria
| | - Gergely Lakatos
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237 - Opatovický mlýn, 37901 Třeboň, Czech Republic
| | - Cecilia Nicoletti
- Department of Biology and Chemistry, AG Biosciences, University of Applied Sciences Upper Austria, Roseggerstraße 15, 4600 Wels, Austria
| | - Karolína Ranglová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237 - Opatovický mlýn, 37901 Třeboň, Czech Republic
| | - João Câmara Manoel
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237 - Opatovický mlýn, 37901 Třeboň, Czech Republic
| | - Tomáš Grivalský
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237 - Opatovický mlýn, 37901 Třeboň, Czech Republic
| | - Daniyar Malikuly Kozhan
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Jiří Masojídek
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237 - Opatovický mlýn, 37901 Třeboň, Czech Republic
| | - Juliane Richter
- Department of Biology and Chemistry, AG Biosciences, University of Applied Sciences Upper Austria, Roseggerstraße 15, 4600 Wels, Austria.
| |
Collapse
|
26
|
Cross-Activation of Two Nitrogenase Gene Clusters by CnfR1 or CnfR2 in the Cyanobacterium Anabaena variabilis. Microbiol Spectr 2021; 9:e0106021. [PMID: 34612667 PMCID: PMC8510180 DOI: 10.1128/spectrum.01060-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Anabaena variabilis, the nif1 genes, which are activated by CnfR1, produce a Mo-nitrogenase that is expressed only in heterocysts. Similarly, the nif2 genes, which are activated by CnfR2, make a Mo-nitrogenase that is expressed only in anaerobic vegetative cells. However, CnfR1, when it was expressed in anaerobic vegetative cells under the control of the cnfR2 promoter or from the Co2+-inducible coaT promoter, activated the expression of both nifB1 and nifB2. Activation of nifB2, but not nifB1, by CnfR1 required NtcA. Thus, expression of the nif1 system requires no heterocyst-specific factor other than CnfR1. In contrast, CnfR2, when it was expressed in heterocysts under the control of the cnfR1 promoter or from the coaT promoter, did not activate the expression of nifB1 or nifB2. Thus, activation of the nif2 system in anaerobic vegetative cells by CnfR2 requires additional factors absent in heterocysts. CnfR2 made from the coaT promoter activated nifB2 expression in anaerobic vegetative cells grown with fixed nitrogen; however, oxygen inhibited CnfR2 activation of nifB2 expression. In contrast, activation of nifB1 and nifB2 by CnfR1 was unaffected by oxygen. CnfR1, which does not activate the nifB2 promoter in heterocysts, activated the expression of the entire nif2 gene cluster from a nifB2::nifB1::nifB2 hybrid promoter in heterocysts, producing functional Nif2 nitrogenase in heterocysts. However, activity was poor compared to the normal Nif1 nitrogenase. Expression of the nif2 cluster in anaerobic vegetative cells of Nostoc sp. PCC 7120, a strain lacking the nif2 nitrogenase, resulted in expression of the nif2 genes but weak nitrogenase activity. IMPORTANCE Cyanobacterial nitrogen fixation is important in the global nitrogen cycle, in oceanic productivity, and in many plant and fungal symbioses. While the proteins that mediate nitrogen fixation have been well characterized, the regulation of this complex and expensive process is poorly understood in cyanobacteria. Using a genetic approach, we have characterized unique and overlapping functions for two homologous transcriptional activators CnfR1 and CnfR2 that activate two distinct nitrogenases in a single organism. We found that CnfR1 is promiscuous in its ability to activate both nitrogenase systems, whereas CnfR2 depends on additional cellular factors; thus, it activates only one nitrogenase system.
Collapse
|
27
|
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J Microbiol Biotechnol 2021; 37:201. [PMID: 34664124 DOI: 10.1007/s11274-021-03157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
28
|
Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, Sporre E, Branco Dos Santos F, Hudson EP. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab Eng 2021; 68:131-141. [PMID: 34601120 DOI: 10.1016/j.ymben.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023]
Abstract
Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.
Collapse
Affiliation(s)
- Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Pineda Hernández
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Ljungqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Hallman
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Sporre
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
29
|
Vavitsas K, Kugler A, Satta A, Hatzinikolaou DG, Lindblad P, Fewer DP, Lindberg P, Toivari M, Stensjö K. Doing synthetic biology with photosynthetic microorganisms. PHYSIOLOGIA PLANTARUM 2021; 173:624-638. [PMID: 33963557 DOI: 10.1111/ppl.13455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Mervi Toivari
- VTT, Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Karlsen J, Asplund-Samuelsson J, Jahn M, Vitay D, Hudson EP. Slow Protein Turnover Explains Limited Protein-Level Response to Diurnal Transcriptional Oscillations in Cyanobacteria. Front Microbiol 2021; 12:657379. [PMID: 34194405 PMCID: PMC8237939 DOI: 10.3389/fmicb.2021.657379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolically engineered cyanobacteria have the potential to mitigate anthropogenic CO2 emissions by converting CO2 into renewable fuels and chemicals. Yet, better understanding of metabolic regulation in cyanobacteria is required to develop more productive strains that can make industrial scale-up economically feasible. The aim of this study was to find the cause for the previously reported inconsistency between oscillating transcription and constant protein levels under day-night growth conditions. To determine whether translational regulation counteracts transcriptional changes, Synechocystis sp. PCC 6803 was cultivated in an artificial day-night setting and the level of transcription, translation and protein was measured across the genome at different time points using mRNA sequencing, ribosome profiling and quantitative proteomics. Furthermore, the effect of protein turnover on the amplitude of protein oscillations was investigated through in silico simulations using a protein mass balance model. Our experimental analysis revealed that protein oscillations were not dampened by translational regulation, as evidenced by high correlation between translational and transcriptional oscillations (r = 0.88) and unchanged protein levels. Instead, model simulations showed that these observations can be attributed to a slow protein turnover, which reduces the effect of protein synthesis oscillations on the protein level. In conclusion, these results suggest that cyanobacteria have evolved to govern diurnal metabolic shifts through allosteric regulatory mechanisms in order to avoid the energy burden of replacing the proteome on a daily basis. Identification and manipulation of such mechanisms could be part of a metabolic engineering strategy for overproduction of chemicals.
Collapse
Affiliation(s)
- Jan Karlsen
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Michael Jahn
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Dóra Vitay
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden.,Biosyntia ApS, Copenhagen, Denmark
| | - Elton P Hudson
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
31
|
Jodlbauer J, Rohr T, Spadiut O, Mihovilovic MD, Rudroff F. Biocatalysis in Green and Blue: Cyanobacteria. Trends Biotechnol 2021; 39:875-889. [PMID: 33468423 DOI: 10.1016/j.tibtech.2020.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Recently, several studies have proven the potential of cyanobacteria as whole-cell biocatalysts for biotransformation. Compared to heterotrophic hosts, cyanobacteria show unique advantages thanks to their photoautotrophic metabolism. Their ability to use light as energy and CO2 as carbon source promises a truly sustainable production platform. Their photoautotrophic metabolism offers an encouraging source of reducing power, which makes them attractive for redox-based biotechnological purposes. To exploit the full potential of these whole-cell biocatalysts, cyanobacterial cells must be considered in their entirety. With this emphasis, this review summarizes the latest developments in cyanobacteria research with a strong focus on the benefits associated with their unique metabolism. Remaining bottlenecks and recent strategies to overcome them are evaluated for their potential in future applications.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, research area Biochemical Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria.
| |
Collapse
|
32
|
Gale GAR, Wang B, McCormick AJ. Evaluation and Comparison of the Efficiency of Transcription Terminators in Different Cyanobacterial Species. Front Microbiol 2021; 11:624011. [PMID: 33519785 PMCID: PMC7843447 DOI: 10.3389/fmicb.2020.624011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria utilize sunlight to convert carbon dioxide into a wide variety of secondary metabolites and show great potential for green biotechnology applications. Although cyanobacterial synthetic biology is less mature than for other heterotrophic model organisms, there are now a range of molecular tools available to modulate and control gene expression. One area of gene regulation that still lags behind other model organisms is the modulation of gene transcription, particularly transcription termination. A vast number of intrinsic transcription terminators are now available in heterotrophs, but only a small number have been investigated in cyanobacteria. As artificial gene expression systems become larger and more complex, with short stretches of DNA harboring strong promoters and multiple gene expression cassettes, the need to stop transcription efficiently and insulate downstream regions from unwanted interference is becoming more important. In this study, we adapted a dual reporter tool for use with the CyanoGate MoClo Assembly system that can quantify and compare the efficiency of terminator sequences within and between different species. We characterized 34 intrinsic terminators in Escherichia coli, Synechocystis sp. PCC 6803, and Synechococcus elongatus UTEX 2973 and observed significant differences in termination efficiencies. However, we also identified five terminators with termination efficiencies of >96% in all three species, indicating that some terminators can behave consistently in both heterotrophic species and cyanobacteria.
Collapse
Affiliation(s)
- Grant A. R. Gale
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair J. McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Selim KA, Haffner M. Heavy Metal Stress Alters the Response of the Unicellular Cyanobacterium Synechococcus elongatus PCC 7942 to Nitrogen Starvation. Life (Basel) 2020; 10:life10110275. [PMID: 33171751 PMCID: PMC7694984 DOI: 10.3390/life10110275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Non-diazotrophic cyanobacteria are unable to fix atmospheric nitrogen and rely on combined nitrogen for growth and development. In the absence of combined nitrogen sources, most non-diazotrophic cyanobacteria, e.g., Synechocystis sp. PCC 6803 or Synechococcus elongatus PCC 7942, enter a dormant stage called chlorosis. The chlorosis process involves switching off photosynthetic activities and downregulating protein biosynthesis. Addition of a combined nitrogen source induces the regeneration of chlorotic cells in a process called resuscitation. As heavy metals are ubiquitous in the cyanobacterial biosphere, their influence on the vegetative growth of cyanobacterial cells has been extensively studied. However, the effect of heavy metal stress on chlorotic cyanobacterial cells remains elusive. To simulate the natural conditions, we investigated the effects of long-term exposure of S. elongatus PCC 7942 cells to both heavy metal stress and nitrogen starvation. We were able to show that elevated heavy metal concentrations, especially for Ni2+, Cd2+, Cu2+ and Zn2+, are highly toxic to nitrogen starved cells. In particular, cells exposed to elevated concentrations of Cd2+ or Ni2+ were not able to properly enter chlorosis as they failed to degrade phycobiliproteins and chlorophyll a and remained greenish. In resuscitation assays, these cells were unable to recover from the simultaneous nitrogen starvation and Cd2+ or Ni2+ stress. The elevated toxicity of Cd2+ or Ni2+ presumably occurs due to their interference with the onset of chlorosis in nitrogen-starved cells, eventually leading to cell death.
Collapse
|
34
|
Wang F, Gao Y, Yang G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production. Bioengineered 2020; 11:1208-1220. [PMID: 33124500 PMCID: PMC8291842 DOI: 10.1080/21655979.2020.1837458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are Gram-negative photoautotrophic prokaryotes and have shown great importance to the Earth’s ecology. Based on their capability in oxygenic photosynthesis and genetic merits, they can be engineered as microbial chassis for direct conversion of carbon dioxide to value-added biofuels and chemicals. In the last decades, attempts have given to the application of synthetic biology tools and approaches in the development of cyanobacterial cell factories. Despite the successful proof-of-principle studies, large-scale application is still a technical challenge due to low yields of bioproducts. Therefore, recent efforts are underway to characterize and develop genetic regulatory parts and strategies for the synthetic biology applications in cyanobacteria. In this review, we present the recent advancements and application in cyanobacterial synthetic biology toolboxes. We also discuss the limitations and future perspectives for using such novel tools in cyanobacterial biotechnology.
Collapse
Affiliation(s)
- Fen Wang
- Department of Surgery, College of Medicine, University of Florida , Gainesville, FL, USA
| | - Yuanyuan Gao
- Jining Academy of Agricultural Science , Jining, Shandong, China
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida , Gainesville, FL, USA
| |
Collapse
|
35
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
36
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
37
|
Dienst D, Wichmann J, Mantovani O, Rodrigues JS, Lindberg P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Sci Rep 2020; 10:5932. [PMID: 32246065 PMCID: PMC7125158 DOI: 10.1038/s41598-020-62681-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria and microalgae are attractive photoautotrophic host systems for climate-friendly production of fuels and other value-added biochemicals. However, for economic applications further development and implementation of efficient and sustainable cultivation strategies are essential. Here, we present a comparative study on cyanobacterial sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803 using a commercial lab-scale High Density Cultivation (HDC) platform in the presence of dodecane as in-situ extractant. Operating in a two-step semi-batch mode over a period of eight days, volumetric yields of (E)-α-bisabolene were more than two orders of magnitude higher than previously reported for cyanobacteria, with final titers of 179.4 ± 20.7 mg * L−1. Likewise, yields of the sesquiterpene alcohols (−)-patchoulol and (−)-α-bisabolol were many times higher than under reference conditions, with final titers of 17.3 ± 1.85 mg * L−1 and 96.3 ± 2.2 mg * L−1, respectively. While specific productivity was compromised particularly for (E)-α-bisabolene in the HDC system during phases of high biomass accumulation rates, volumetric productivity enhancements during linear growth at high densities were more pronounced for (E)-α-bisabolene than for the hydroxylated terpenoids. Together, this study provides additional insights into cell density-related process characteristics, introducing HDC as highly efficient strategy for phototrophic terpenoid production in cyanobacteria.
Collapse
Affiliation(s)
- Dennis Dienst
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Julian Wichmann
- Faculty of Biology - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Oliver Mantovani
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - João S Rodrigues
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden.
| |
Collapse
|