1
|
Bai G, Liu C, Gao Z, Lu B, Tong X, Guo X, Yang N. Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902951. [PMID: 31353799 DOI: 10.1002/smll.201902951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Maximizing activity of Pt catalysts toward methanol oxidation reaction (MOR) together with minimized poisoning of adsorbed CO during MOR still remains a big challenge. In the present work, uniform and well-distributed Pt nanoparticles (NPs) grown on an atomic carbon layer, that is in situ formed by means of dry-etching of silicon carbide nanoparticles (SiC NPs) with CCl4 gas, are explored as potential catalysts for MOR. Significantly, as-synthesized catalysts exhibit remarkably higher MOR catalytic activity (e.g., 647.63 mA mg-1 at a peak potential of 0.85 V vs RHE) and much improved anti-CO poisoning ability than the commercial Pt/C catalysts, Pt/carbon nanotubes, and Pt/graphene catalysts. Moreover, the amount of expensive Pt is a few times lower than that of the commercial and reported catalyst systems. As confirmed from density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) measurements, such high performance is due to reduced adsorption energy of CO on the Pt NPs and an increased amount of adsorbed energy OH species that remove adsorbed CO fast and efficiently. Therefore, these catalysts can be utilized for the development of large-scale and industry-orientated direct methanol fuel cells.
Collapse
Affiliation(s)
- Gailing Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China
| | - Chang Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Baoying Lu
- Guangxi University of Science and Technology, Liuzhou, 545000, China
| | - Xili Tong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiangyun Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
2
|
Liu H, Ke K, Li C, Chen X, Wu Y. Facile Synthesis and in situ TEM Observation of Nanoporous Pd for Enhanced Catalytic Applications. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haiyang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Kai Ke
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yulian Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
3
|
Hussain G, Aldous L, Silvester DS. Preparation of platinum-based 'cauliflower microarrays' for enhanced ammonia gas sensing. Anal Chim Acta 2018; 1048:12-21. [PMID: 30598141 DOI: 10.1016/j.aca.2018.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 09/21/2018] [Indexed: 12/01/2022]
Abstract
In amperometric gas sensors, the flux of gas to electrode surfaces determines the analytical response and detection limit. For trace concentration detection, the resulting low current prevents the miniaturisation of such sensors. Therefore, in this study, we have developed repeating arrays of nanostructures which maximise flux towards their surface. Unique platinum 3D cauliflower-shaped deposits with individual floret-shaped segments have been produced in a single step electrodeposition process. The confined walls of recessed microelectrode arrays (10 μm in diameter, 90 electrodes) are utilized to produce these structures with a high surface area. Distinct segments are observed, with the gaps corresponding to electrodes adjacent in the microarray; thus the majority of the deposits face the primary diffusion zones. The sizes and shapes of the deposits are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and the largest structures are found to be 22 ± 1 μm in width and 7.9 ± 0.2 μm in height over the microhole. These modified electrodes are employed to detect ammonia using the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2], as an electrolyte. Current responses on the cauliflower arrays were seven times higher for linear sweep voltammetry and ca. 12 times higher for chronoamperometry, relative to the bare microrrays, and limits of detection were less than 1 part per million of ammonia (gas phase concentration). This work highlights the use of modified microarrays with highly accessible 3D structures for enhanced electroanalytical detection of analyte species at ultra low concentrations.
Collapse
Affiliation(s)
- Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia
| | - Leigh Aldous
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Debbie S Silvester
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| |
Collapse
|
4
|
Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee WG, Yoon T, Kim KS. Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01800] [Citation(s) in RCA: 638] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Varun Vij
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Siraj Sultan
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ahmad M. Harzandi
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Abhishek Meena
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jitendra N. Tiwari
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Wang-Geun Lee
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taeseung Yoon
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kwang S. Kim
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Zhang B, Pan Z, Yu K, Feng G, Xiao J, Wu S, Li J, Chen C, Lin Y, Hu G, Wei Z. Titanium vanadium nitride supported Pt nanoparticles as high-performance catalysts for methanol oxidation reaction. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3621-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Duan Y, Sun Y, Pan S, Dai Y, Hao L, Zou J. Self-Stable WP/C Support with Excellent Cocatalytic Functionality for Pt: Enhanced Catalytic Activity and Durability for Methanol Electro-Oxidation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33572-33582. [PMID: 27960416 DOI: 10.1021/acsami.6b09756] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To endow catalyst support with excellent stability and cocatalytic activity toward methanol, oxidation reaction (MOR) is an effective way to strengthen the electrocatalytic activity of Pt-based catalysts. Tungsten phosphide/3D-corrugated porous carbon (WP/C) composite as Pt-support and cocatalyst for MOR is prepared via a synchronous synthesis method. Porous 3D-tufted structure and high surface area of WP/C with abundant oxygen-containing groups (such as C-O-C, C-O-H, or C-OH) can significantly improve the exposure of active sites, which enlarge the contact area with electrolyte and facilitate the mass transfer and absorption of methanol for promoting the MOR activity in acidic electrolyte. Pt-WP/C exhibits a considerably higher mass activity (1559.3 mA mgPt-1) for MOR than that of Pt/C (488.2 mA mgPt-1), owing to the special activity of Wδ+ and Pδ- sites for the decomposition reaction of water. With the introduction of W species, more available P species (passivated or not) are activated for further enhancing the cocatalytic activity of WP for MOR. Furthermore, the CO tolerance and durability of Pt-WP/C are also remarkable, which should benefit from the fast surface transport of adsorbed CO on different crystalline faces of WP and the extremely stable WP-C structure originating from the existence of P-P chains between the adjacent WP particles, respectively. The design of the porous structure and cocatalytic effect of this catalyst support (WP/C) provides a promising method to drastically enhance MOR activity.
Collapse
Affiliation(s)
| | | | | | - Ying Dai
- School of Civil Engineering, Heilongjiang Institute of Technology , Hongqi Street 999#, Daowai District, Harbin 150050, China
| | | | | |
Collapse
|
7
|
Liu H, Wang S, Jia F. Conversion of commercial Pt/C to “clean” Pt-Cu/C catalyst with high activity toward methanol oxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Melvin AA, Joshi VS, Poudyal DC, Khushalani D, Haram SK. Electrocatalyst on insulating support?: Hollow silica spheres loaded with Pt nanoparticles for methanol oxidation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6590-6595. [PMID: 25751175 DOI: 10.1021/am508830h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electrocatalytic oxidation of methanol on silica hollow spheres, loaded with platinum nanoparticles (Pt-SiO2-HS), is reported. The functionalized hollow silica spheres were prepared by the surfactant (lauryl ester of tyrosine) template-assisted synthesis. These spheres were loaded with platinum nanoparticles by γ-radiolysis. Energy-dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS) analyses confirmed presence of Si and Pt in the composite. High-resolution transmission electron microscopy showed the formation of uniformly deposited Pt nanoparticles over the hollow spheres with a predominant Pt(111) lattice plane on the surface. In spite of the poor conducting nature of the silica support, the oxidation potential and current density per unit mass for methanol oxidation were noted to be ca. 0.72 V vs NHE and 270 mA mg(-1), respectively, which are among the best values reported in its class. The composite did not show any sign of a degradation even after repeated use. In fact, the anodic current was found to increase under constant polarization, which is attributed to a facile reaction between adsorbed CO with a surface hydroxyl group present on the silica support. These results are in favor of Pt-SiO2-HS as a promising electrocatalyst material in the direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- Ambrose A Melvin
- †Department of Chemistry, Savitribai Phule Pune University, (Formerly, University of Pune), Ganeshkhind, Pune 411007, India
- ‡Materials Chemistry Group, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai 400 005, India
| | - Vrushali S Joshi
- †Department of Chemistry, Savitribai Phule Pune University, (Formerly, University of Pune), Ganeshkhind, Pune 411007, India
| | - Durgasha C Poudyal
- †Department of Chemistry, Savitribai Phule Pune University, (Formerly, University of Pune), Ganeshkhind, Pune 411007, India
| | - Deepa Khushalani
- ‡Materials Chemistry Group, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai 400 005, India
| | - Santosh K Haram
- †Department of Chemistry, Savitribai Phule Pune University, (Formerly, University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
9
|
Ensafi AA, Jafari-Asl M, Rezaei B. Graphene/nano-porous silicon and graphene/bimetallic silicon nanostructures (Pt–M, M: Pd, Ru, Rh), efficient electrocatalysts for the hydrogen evolution reaction. Phys Chem Chem Phys 2015; 17:23770-82. [DOI: 10.1039/c5cp04361a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work nano-porous silicon flour (Nano-PSiF) was synthesized first and then there was an investigation into its electrocatalytic activity for the electrochemical hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
- Ali A. Ensafi
- Department of Analytical Chemistry
- Faculty of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Mehdi Jafari-Asl
- Department of Analytical Chemistry
- Faculty of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Behzad Rezaei
- Department of Analytical Chemistry
- Faculty of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| |
Collapse
|
10
|
Kharisov BI, Kharissova OV, García BO, Méndez YP, de la Fuente IG. State of the art of nanoforest structures and their applications. RSC Adv 2015. [DOI: 10.1039/c5ra22738k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Forest-like nanostructures, their syntheses, properties, and applications are reviewed.
Collapse
|
11
|
Huang Y, Huang H, Gao Q, Gan C, Liu Y, Fang Y. Electroless synthesis of two-dimensional sandwich-like Pt/Mn3O4/reduced-graphene-oxide nanocomposites with enhanced electrochemical performance for methanol oxidation. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.10.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity. Nat Commun 2014; 4:2221. [PMID: 23900456 PMCID: PMC3731667 DOI: 10.1038/ncomms3221] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 07/01/2013] [Indexed: 01/12/2023] Open
Abstract
Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. Platinum nanoclusters are well-known catalysts for the oxygen reduction reaction, although the performance of clusters smaller than 2 nm is poorly studied. Here, the authors report 1.4 nm platinum clusters supported on DNA–graphene oxide composites and demonstrate promising electrochemical activity and stability.
Collapse
|
13
|
Promoting performance and CO tolerance of Pt nanocatalyst for direct methanol fuel cells by supporting on high-surface-area silicon carbide. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2336-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Tiwari JN, Kemp KC, Nath K, Tiwari RN, Nam HG, Kim KS. Interconnected Pt-nanodendrite/DNA/reduced-graphene-oxide hybrid showing remarkable oxygen reduction activity and stability. ACS NANO 2013; 7:9223-9231. [PMID: 23991709 DOI: 10.1021/nn4038404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Controlling the morphology and size of platinum nanodendrites (PtDs) is a key factor in improving their catalytic activity and stability. Here, we report the synthesis of PtDs on genomic-double-stranded-DNA/reduced-graphene-oxide (gdsDNA/rGO) by the NaBH4 reduction of H(2)PtCl(6) in the presence of plant gdsDNA. Compared to industrially adopted catalysts (i.e., state-of-the-art Pt/C catalyst, Pt/rGO, Pt(3)Co, etc.), the as-synthesized PtDs/gdsDNA/rGO hybrid displays very high oxygen reduction reaction (ORR) catalytic activities (much higher than the 2015 U.S. Department of Energy (DOE) target values), which are the rate-determining steps in electrochemical energy devices, in terms of onset-potential, half-wave potential, specific-activity, mass-activity, stability, and durability. Moreover, the hybrid exhibits a highly stable mass activity for the ORR over a wide pH range of 1-13. These exceptional properties would make the hybrid applicable in next-generation electrochemical energy devices.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology , San 31, Hyojadong, Namgu, Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Yu X, Kuai L, Geng B. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. NANOSCALE 2012; 4:5738-5743. [PMID: 22893017 DOI: 10.1039/c2nr31765f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pt-based nanocomposites have been of great research interest. In this paper, we design an efficient MO/rGO/Pt sandwich nanostructure as an anodic electrocatalyst for DMFCs with combination of the merits of rigid structure of metallic oxides (MOs) and excellent electronic conductivity of reduced oxidized graphene (rGO) as well as overcoming their shortcomings. In this case, the CeO(2)/rGO/Pt sandwich nanostructure is successfully fabricated through a facile hydrothermal approach in the presence of graphene oxide and CeO(2) nanoparticles. This structure has a unique building architecture where rGO wraps up the CeO(2) nanoparticles and Pt nanoparticles are homogeneously dispersed on the surface of rGO. This novel structure endows this material with great electrocatalytic performance in methanol oxidation: it reduces the overpotential of methanol oxidation significantly and its electrocatalytic activity and stability are much enhanced compared with Pt/rGO, CeO(2)/Pt and Pt/C catalysts. This work supplies a unique MO/rGO/Pt sandwich nanostructure as an efficient way to improve the electrocatalytic performance, which will surely shed some light on the exploration of some novel structures of electrocatalyst for DMFCs.
Collapse
Affiliation(s)
- Xue Yu
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, P. R. China
| | | | | |
Collapse
|
16
|
Zhuang L, Wang W, Hong F, Yang S, You H, Fang J, Ding B. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction. J SOLID STATE CHEM 2012. [DOI: 10.1016/j.jssc.2012.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Rao CNR, Ramakrishna Matte HSS, Voggu R, Govindaraj A. Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 2012; 41:5089-120. [PMID: 22430878 DOI: 10.1039/c2dt12266a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles probably constitute the largest class of nanomaterials. Nanoparticles of several inorganic materials have been prepared by employing a variety of synthetic strategies. Besides synthesizing nanoparticles, there has been considerable effort to selectively prepare nanoparticles of different shapes. In view of the great interest in inorganic nanoparticles evinced in the last few years, we have prepared this perspective on the present status of the synthesis of inorganic nanoparticles. This article includes a brief discussion of methods followed by reports on the synthesis of nanoparticles of various classes of inorganic materials such as metals, alloys, oxides chalcogenides and pnictides. A brief section on core-shell nanoparticles is also included.
Collapse
Affiliation(s)
- C N R Rao
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560 064, India.
| | | | | | | |
Collapse
|
18
|
Hsieh TL, Chen HW, Kung CW, Wang CC, Vittal R, Ho KC. A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm14623a] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Pan K, Ming H, Yu H, Huang H, Liu Y, Kang Z. Copper nanoparticles modified silicon nanowires with enhanced cross-coupling catalytic ability. Dalton Trans 2012; 41:2564-6. [DOI: 10.1039/c2dt12182d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Ott A, Jones LA, Bhargava SK. Direct electrodeposition of porous platinum honeycomb structures. Electrochem commun 2011. [DOI: 10.1016/j.elecom.2011.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|