1
|
Peng J, Song Y, Lin Y, Huang Z. Introduction and Development of Surface-Enhanced Raman Scattering (SERS) Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1648. [PMID: 39452983 PMCID: PMC11510290 DOI: 10.3390/nano14201648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Since its discovery, the phenomenon of Surface Enhanced Raman Scattering (SERS) has gradually become an important tool for analyzing the composition and structure of substances. As a trace technique that can efficiently and nondestructively detect single molecules, the application of SERS has expanded from environmental and materials science to biomedical fields. In the past decade or so, the explosive development of nanotechnology and nanomaterials has further boosted the research of SERS technology, as nanomaterial-based SERS substrates have shown good signal enhancement properties. So far, it is widely recognized that the morphology, size, composition, and stacking mode of nanomaterials have a very great influence on the strength of the substrate SERS effect. Herein, an overview of methods for the preparation of surface-enhanced Raman scattering (SERS) substrates is provided. Specifically, this review describes a variety of common SERS substrate preparation methods and explores the potential and promise of these methods for applications in chemical analysis and biomedical fields. By detailing the influence of different nanomaterials (e.g., metallic nanoparticles, nanowires, and nanostars) and their structural features on the SERS effect, this article aims to provide a comprehensive understanding of SERS substrate preparation techniques.
Collapse
Affiliation(s)
- Jianping Peng
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yutao Song
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yue Lin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Zhenkai Huang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
2
|
Zhou Y, Wang W. Polydopamine Nanospheres-grafted-PDMAEMA Brushes/Au Composites as a Thermally Adjustable Catalyst for the Reduction of 4-nitrophenol. CHEM LETT 2022. [DOI: 10.1246/cl.220220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yumeng Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, No.818, Fenghua Road, Ningbo 315211, China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, No.818, Fenghua Road, Ningbo 315211, China
| |
Collapse
|
3
|
Chen X, Zhang L, Xu B, Chen T, Hu L, Yao W, Zhou M, Xu H. Hairy silica nanosphere supported metal nanoparticles for reductive degradation of dye pollutants. NANOSCALE ADVANCES 2021; 3:2879-2886. [PMID: 36134192 PMCID: PMC9419623 DOI: 10.1039/d1na00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/21/2021] [Indexed: 05/03/2023]
Abstract
Hairy materials can act as a sort of scaffold for the fabrication of functional hybrid composites. In this work, silica nanospheres modified with covalently grafted poly(4-vinylpyridine) (P4VP) brushes, namely, "hairy" silica spheres, were utilized as a support for the anchorage of metal nanoparticles (MNPs), thus resulting in the hierarchical SiO2@P4VP/MNP structure. In this triple-phase boundary heteronanostructure, the SiO2-supported MNPs are well stabilized by the P4VP matrix to avoid aggregation and leaching. These SiO2@P4VP/MNP nanocomposites exhibit good catalytic activity in the reductive degradation of organic dyes, i.e., 4-nitrophenol and rhodamine B and possess excellent stability and recyclability for five successive cycles.
Collapse
Affiliation(s)
- Xin Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Li Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China Nanjing 210042 China
| | - Tingting Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Lianhong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Wei Yao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Mengxiang Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
4
|
Mullen E, Morris MA. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1085. [PMID: 33922231 PMCID: PMC8146645 DOI: 10.3390/nano11051085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to current reliance upon large amounts of solvents, acids and gases that have numerous toxicological impacts. Management and assessment of hazardous chemicals is complicated by trade secrets and continual rapid change in the electronic manufacturing process. Of the many subprocesses involved in chip manufacturing, lithographic processes are of particular concern. Current developments in bottom-up lithography, such as directed self-assembly (DSA) of block copolymers (BCPs), are being considered as a next-generation technology for semiconductor chip production. These nanofabrication techniques present a novel opportunity for improving the sustainability of lithography by reducing the number of processing steps, energy and chemical waste products involved. At present, to the extent of our knowledge, there is no published life cycle assessment (LCA) evaluating the environmental impact of new bottom-up lithography versus conventional lithographic techniques. Quantification of this impact is central to verifying whether these new nanofabrication routes can replace conventional deposition techniques in industry as a more environmentally friendly option.
Collapse
Affiliation(s)
- Eleanor Mullen
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| | - Michael A. Morris
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| |
Collapse
|
5
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Mocny P, Klok HA. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101185] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Stern LA, Mocny P, Vrubel H, Bilgic T, Klok HA, Hu X. Polymer-Brush-Templated Three-Dimensional Molybdenum Sulfide Catalyst for Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6253-6261. [PMID: 29369614 DOI: 10.1021/acsami.7b16679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Earth-abundant hydrogen evolution catalysts are essential for high-efficiency solar-driven water splitting. Although a significant amount of studies have been dedicated to the development of new catalytic materials, the microscopic assembly of these materials has not been widely investigated. Here, we describe an approach to control the three-dimensional (3D) assembly of amorphous molybdenum sulfide using polymer brushes as a template. To this end, poly(dimethylaminoethyl methacrylate) brushes were grown from highly oriented pyrolytic graphite. These cationic polymer films bind anionic MoS42- through an anion-exchange reaction. In a final oxidation step, the polymer-bound MoS42- is converted into the amorphous MoSx catalyst. The flexibility of the assembly design allowed systematic optimization of the 3D catalyst. The best system exhibited turnover frequencies up to 1.3 and 4.9 s-1 at overpotentials of 200 and 250 mV, respectively. This turnover frequency stands out among various molybdenum sulfide catalysts. The work demonstrates a novel strategy to control the assembly of hydrogen evolution reaction catalysts.
Collapse
Affiliation(s)
- Lucas-Alexandre Stern
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI , BCH 3305, 1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL) , Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Heron Vrubel
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI , BCH 3305, 1015 Lausanne, Switzerland
| | - Tugba Bilgic
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL) , Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL) , Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI , BCH 3305, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Feng L, Wang K, Li P, Wang W, Chen T. Fried egg-like Au mesostructures grown on poly(4-vinylpyridine) brushes grafted onto graphene oxide. NEW J CHEM 2018. [DOI: 10.1039/c8nj03272f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical Au mesostructures as SERS-active substrates were facilely fabricated by the reduction of HAuCl4-loaded poly(4-vinylpyridine) brushes with ascorbic acid.
Collapse
Affiliation(s)
- Lihua Feng
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Ke Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Ping Li
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Tao Chen
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science
- Ningbo 315201
- P. R. China
| |
Collapse
|
9
|
Xing G, Wang W, Wang K, Li P, Chen T. Shape-Controlled Synthesis of Au-Polypyrrole Composites Using Poly(4-vinylpyridine) Brush Grafted on Graphene Oxide as a Reaction Chamber. Chemistry 2017; 23:17549-17555. [PMID: 28990232 DOI: 10.1002/chem.201703183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Guoke Xing
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Wenqin Wang
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Ke Wang
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Ping Li
- Faculty of Materials Science and Chemical Engineering; Ningbo University; 818 Fenghua Road Ningbo 315211 China
| | - Tao Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences; 1219 Zhongguan West Road Ningbo 315201 China
| |
Collapse
|
10
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Wang W, Zou H, Xing G, Shang M, Chen T. Poly(2-vinylpyridine) brushes as a reaction chamber to fabricate spiky gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra02906c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AuCl4− ions loaded in poly(2-vinylpyridine) brushes were reduced by pyrrole, one-step synthesized spiky gold nanoparticles and polypyrrole.
Collapse
Affiliation(s)
- Wenqin Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Hanzhi Zou
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Guoke Xing
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Mengying Shang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Tao Chen
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- P. R. China
| |
Collapse
|
12
|
Wünnemann P, Noyong M, Kreuels K, Brüx R, Gordiichuk P, van Rijn P, Plamper FA, Simon U, Böker A. Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays. Macromol Rapid Commun 2016; 37:1446-52. [DOI: 10.1002/marc.201600287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/17/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Patrick Wünnemann
- Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstraße 50 52056 Aachen Germany
| | - Michael Noyong
- Institute of Inorganic Chemistry; RWTH Aachen University; JARA-FIT, Landoltweg 1 52074 Aachen Germany
| | - Klaus Kreuels
- Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstraße 50 52056 Aachen Germany
| | - Roland Brüx
- Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstraße 50 52056 Aachen Germany
| | - Pavlo Gordiichuk
- Zernike Institute for Advanced Materials; University of Groningen; A. Deusinglaan 1 9747AG Groningen The Netherlands
| | - Patrick van Rijn
- Zernike Institute for Advanced Materials; University of Groningen; A. Deusinglaan 1 9747AG Groningen The Netherlands
- University Medical Center Groningen Department of Biomedical Engineering-FB40; University of Groningen; A. Deusinglaan 1 9713 AV Groningen The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41; University of Groningen; A. Deusinglaan 1 9713AW Groningen The Netherlands
| | - Felix A. Plamper
- Institute of Physical Chemistry; RWTH Aachen University; Landoltweg 2 52074 Aachen Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry; RWTH Aachen University; JARA-FIT, Landoltweg 1 52074 Aachen Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research (IAP) & Lehrstuhl für Polymermaterialien und Polymertechnologien; University of Potsdam; Geiselbergstraße 69 14476 Potsdam-Golm Germany
| |
Collapse
|
13
|
Thulluri C, Pinnamaneni SR, Shetty PR, Addepally U. Synthesis of Lignin-Based Nanomaterials/Nanocomposites: Recent Trends and Future Perspectives. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Chiranjeevi Thulluri
- Centre for Biotechnology, Institute for Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | | | - Prakasham Reddy Shetty
- Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Uma Addepally
- Centre for Biotechnology, Institute for Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat Commun 2015; 6:7260. [PMID: 26068809 PMCID: PMC4490556 DOI: 10.1038/ncomms8260] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022] Open
Abstract
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene–metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm−3 and 1,400 mW cm−3, respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices. It is challenging to fabricate flexible and wearable supercapacitors with high energy and power densities using cost-effective materials and scalable processes. Here, the authors present a supercapacitor yarn based on graphene and metallic textile composites, which shows potential to fulfil those requirements.
Collapse
|
15
|
Li B, Yu B, Ye Q, Zhou F. Tapping the potential of polymer brushes through synthesis. Acc Chem Res 2015; 48:229-37. [PMID: 25521476 DOI: 10.1021/ar500323p] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONSPECTUS: Polymer brushes are becoming increasing popular in the chemical literature, because scientists can control their chemical configuration, density, architecture, and thickness down to nanoscale precision with even simple laboratory setups. A polymer brush is made up of a layer of polymers attached to a substrate surface at one end with the other end dangling into a solvent. In a suitable solvent, the polymer chains stretch away from the surface due to both steric and osmotic repulsion between the chain segments. In an inadequate solvent, however, the polymer chains collapse due to enough interior free space after desolvation. This unique class of materials exhibit interesting physicochemical properties at interfaces and have numerous applications from sensing to surface/interface property control. Chemists have made recent advances in surface modification and specific application of polymer brushes, due to both profound mechanistic understanding and synthetic strategies. The commonly used synthetic strategies for generating polymer brushes are surface-initiated polymerizations (SIPs), which resemble planting rice. That is, the assembly of initiator on the surface is similar to transplanting rice seedlings, and the subsequent polymerizations are akin to rice growth. Among different SIP methods, researchers mostly use surface-initiated atom transfer radical polymerization (SI-ATRP) because it provides many advantages in the preparation of well-defined polymer brushes, including easy initiator synthesis, fair control over polymer growth, a "living" end for copolymer grafting, and polymerization in aqueous solution. However, chemists gradually realized that there still room for improvement in this method, since the conventional SI-ATRP method suffers several drawbacks. These include having limited availability on various materials surfaces, rigorous synthetic protocols, heavy consumption and waste of unreacted monomers, and limited ability to control a polymerization process. Moreover, applications of polymer brushes as model surfaces must benefit from the synergistic strategies and profound insights into the fundamental understanding of the polymerization. This is not only to optimize the SI-ATRP process but also to expand the range of monomers, simplify reaction setups, reduce the cost, and ultimately gain control of the synthesis of well-defined polymeric surfaces for material science and engineering. In this Account, we provide an overview of our and others' recent advances in the fabrication of polymer brushes by using SI-ATRP, to promote the widespread application of SI-ATRP and practical applications of the polymer brushes. We aim to provide fundamental mechanistic and synthetic features of SI-ATRP, while emphasizing the various externally applied stimuli mediated catalytic and initiation systems, including electrochemistry, chemical reducing agents, and photochemistry. In addition, we discuss how chemists can advantageously exploit these methods to synthesize functional polymeric surfaces in environmentally friendly media and facilitate in situ regulation of a dynamic polymerization process. We also discuss structural polymer brushes, such as block copolymers and patterned and gradient structures. Finally, we provide examples that highlight some practical applications of polymer brushes using SI-ATRP, especially the emerging polymerization methods. Overall, recently developed SI-ATRP systems overcome many limitations that permit less rigorous synthetic protocols and facilitate scientific community-wide access to surface modifications. By using these methodologies, chemists are tapping the potential of polymer brushes in surface/interface research areas.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Qian Ye
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
16
|
Abstract
3D-gold octahedra superstructures are fabricated on a PAA brush using the seed-mediated growth method. The morphologies of the gold micronanostructures can be tuned by a strategy which opens up a new possibility for shape-controlled growth of noble metal structures.
Collapse
Affiliation(s)
- Wenqin Wang
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Guohong Ren
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Wujin Cai
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| |
Collapse
|
17
|
Wang X, Yan C, Hu H, Zhou X, Guo R, Liu X, Xie Z, Huang Z, Zheng Z. Aqueous and Air-Compatible Fabrication of High-Performance Conductive Textiles. Chem Asian J 2014; 9:2170-7. [DOI: 10.1002/asia.201402230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/09/2014] [Indexed: 11/07/2022]
|
18
|
Pranantyo D, Xu LQ, Neoh KG, Kang ET, Yang W, Lay-Ming Teo S. Photoinduced anchoring and micropatterning of macroinitiators on polyurethane surfaces for graft polymerization of antifouling brush coatings. J Mater Chem B 2014; 2:398-408. [DOI: 10.1039/c3tb21201g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Yang WJ, Cai T, Neoh KG, Kang ET, Dickinson GH, Teo SLM, Rittschof D. Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7065-76. [PMID: 21563843 DOI: 10.1021/la200620s] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Barnacle cement (BC) was beneficially applied on stainless steel (SS) to serve as the initiator anchor for surface-initiated polymerization. The amine and hydroxyl moieties of barnacle cement reacted with 2-bromoisobutyryl bromide to provide the alkyl halide initiator for the surface-initiated atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate (HEMA). The hydroxyl groups of HEMA polymer (PHEMA) were then converted to carboxyl groups for coupling of chitosan (CS) to impart the SS surface with both antifouling and antibacterial properties. The surface-functionalized SS reduced bovine serum albumin adsorption, bacterial adhesion, and exhibited antibacterial efficacy against Escherichia coli (E. coli). The effectiveness of barnacle cement as an initiator anchor was compared to that of dopamine, a marine mussel inspired biomimetic anchor previously used in surface-initiated polymerization. The results indicate that the barnacle cement is a stable and effective anchor for functional surface coatings and polymer brushes.
Collapse
Affiliation(s)
- Wen Jing Yang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | | | | | | | | | | | | |
Collapse
|