1
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
2
|
Aniés F, Qiao Z, Nugraha MI, Basu A, Anthopoulos TD, Gasparini N, Heeney M. N-type polymer semiconductors incorporating para, meta, and ortho-carborane in the conjugated backbone. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
3
|
Panigrahi A, Mandal SC, Pathak B, Sarma TK. Discriminative Detection of Aliphatic, Electron‐Rich and Electron‐Deficient Aromatic Volatile Organic Contaminants Using Conjugated Polymeric Fluorescent Nanoaggregates with Aggregation Induced Emission Characteristics. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Abhiram Panigrahi
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Shyama C. Mandal
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Biswarup Pathak
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
- Discipline of Metallurgy Engineering and Materials Science Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Tridib K. Sarma
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| |
Collapse
|
4
|
A terpyridine-based chemosensor for detection transition metal ions in aqueous solution: Synthesis and characterization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Feng W, Liu K, Zang J, Wang G, Miao R, Ding L, Liu T, Kong J, Fang Y. Flexible and Transparent Oligothiophene- o-Carborane-Containing Hybrid Films for Nonlinear Optical Limiting Based on Efficient Two-Photon Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28985-28995. [PMID: 34121390 DOI: 10.1021/acsami.1c07835] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structure-property relationship for fluorophores with favorable nonlinear optical (NLO) properties are promising topics in organic chemistry and material science. Herein, a series of terthiophene-o-carborane dyads and triads covalently linked with different end-capping styles were readily synthesized and comprehensively investigated. Quantitative values of the crystal and packing structures, photophysical parameters including aggregation-induced emission (AIE) and two-photon absorption (2PA) were provided. Significant impact of carborane unit for introducing the AIE characteristic has been investigated in contrast to the parent oligothiophene. All the obtained fluorophores exhibit maximum absorption around 370 nm in THF and emit bright reddish photoluminscence with absolute fluorescence quantum yields above 16% in solid states. Intramolecular charge communication between oligothiophene and carborane plays important roles in the related NLO properties. These results are supported well by the time-dependent DFT theoretical calculations. Effective 2PA cross sections (δ2PA = 95-355 GM@650 nm) and transition dipole moments of the derivatives are variable for different end-capping styles. Their potential applications as optical limiting materials based on the 2PA mechanism in solutions and doped PDMS films were further evaluated. Taken together, this work provides an understanding of their structure-property relationship, and flexible PDMS films as outstanding candidates for practical applications in optical limiting.
Collapse
Affiliation(s)
- Wan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jianyang Zang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205,P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
6
|
Meriç Ç, Kanbur S, Baycan F. Side chain functional carbazole‐fluorene electroactive polymers: Optical, electrochemical properties, antimicrobial activity and thin film morphologies. J Appl Polym Sci 2021. [DOI: 10.1002/app.50325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Çağla Meriç
- Department of Chemistry, Faculty of Sciences and Arts Çanakkale Onsekiz Mart University Çanakkale Turkey
- Polymeric Materials Research Laboratory Çanakkale Onsekiz Mart University Çanakkale Turkey
| | - Savas Kanbur
- Çanakkale Onsekiz Mart University Health Services Vocational School Çanakkale Turkey
| | - Fatma Baycan
- Department of Chemistry, Faculty of Sciences and Arts Çanakkale Onsekiz Mart University Çanakkale Turkey
- Polymeric Materials Research Laboratory Çanakkale Onsekiz Mart University Çanakkale Turkey
| |
Collapse
|
7
|
Liu K, Wang G, Ding N, Zhang J, Kong J, Liu T, Fang Y. High-Performance Trichloroacetic Acid Sensor Based on the Intramolecular Hydrogen Bond Formation and Disruption of a Specially Designed Fluorescent o-Carborane Derivative in the Film State. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19342-19350. [PMID: 33848121 DOI: 10.1021/acsami.1c03331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Discriminative and sensitive detection of environmentally important and health-related trichloroacetic acid (TCA) suffers from various problems such as bulky instruments and time-consuming operation as well as complex sample processing. Herein, we present a rapid, sensitive, and specific method for the detection of gaseous TCA using a fluorescent single-molecule array. An o-carborane-based benzothiazole derivative (CB-BT-OCH3) with specific fluorescence properties was specifically designed and utilized to fabricate a film-based single-molecule array. It was revealed that the fluorescent film is photochemically stable and extremely sensitive to TCA vapor, depicting an observable fluorescence color change from green to blue. The experimental detection limit is 0.2 ppm, which is lower than the safety limit (1 ppm) required by the threshold limit values and biological exposure indices. In addition, the film could show detectable intensity change within 0.2 s. On the basis of multiple signal responses, a conceptual two-channel-based fluorescent TCA sensor was developed. Importantly, the proposed conceptual sensor paves a new route to the development of specific fluorescent film-based sensor arrays with a single fluorophore as sensing units.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Nannan Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
8
|
Wang Z, Zhao J, Muddassir M, Guan R, Tao S. Recovering the Thermally Activated Delayed Fluorescence in Aggregation-Induced Emitters of Carborane. Inorg Chem 2021; 60:4705-4716. [PMID: 33739084 DOI: 10.1021/acs.inorgchem.0c03664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aggregation-induced emission (AIE) behaviors of carborane-based hybrid emitters have been extensively reported, while their combinations with the thermally activated delayed fluorescence (TADF) are still scarce. We designed and synthesized three Janus carboranes (the chemical structures resemble the double-faced god, Janus) Cb-1/2/3 with different carbazole moieties. All of the Janus carboranes exhibited quenched emission in solution with ΦPL (quantum efficiency of photoluminescence (PL)) lower than 0.01. The PL performance was improved by proceeding to the aggregates in THF/water (ΦPL 0.17-0.35) and further improved in the crystals or solid with ΦPL up to 0.99 for Cb-1, 0.85 for Cb-2, and 0.61 for Cb-3, which agreed with the AIE enhancement. Although the PL of solid Cb-1/2/3 showed non-TADF properties with lifetimes only at several nanoseconds, the crystallographic studies have shown a root cause of π···π stacking that quenched the TADF, and the theoretical calculations forecasted small singlet-triplet energy gaps (ΔES-T) therein. According to these findings, TADF was recovered in Cb-1/2/3 by doping into 1,3-bis(carbazol-9-yl)benzene (mCP). The 10 wt % doped films of Cb-1/2/3 have achieved a trade-off of ΦPL (0.84 in Cb-3 and 0.83 in Cb-1) and delayed lifetime (up to 8 μs). The doped devices of organic light-emitting diodes incorporating Cb-1/2/3 achieved the highest external quantum efficiency at 10.1% and the maximized luminance of 5920 cd/m2 at a driving voltage of 8 V.
Collapse
Affiliation(s)
- Zhaojin Wang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, P.R. China
| | - Juewen Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rongfeng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, P.R. China
| | - Silu Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
| |
Collapse
|
9
|
Wada K, Kakuta T, Yamagishi TA, Ogoshi T. Obvious vapochromic color changes of a pillar[6]arene containing one benzoquinone unit with a mechanochromic change before vapor exposure. Chem Commun (Camb) 2020; 56:4344-4347. [PMID: 32193526 DOI: 10.1039/d0cc01112f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a color changeable aromatic vapor detection system by combining the mechanochromism and vapochromism of pillar[6]arene containing one benzoquinone unit. The color of pillar[6]arene solid was changed by mechanochromism before vapor exposure. Different aromatic vapors then induced an obvious vapochromic color change from dark red to light orange or vice versa.
Collapse
Affiliation(s)
- Keisuke Wada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | | | | | | |
Collapse
|
10
|
Recent Progress in the Development of Solid‐State Luminescent
o
‐Carboranes with Stimuli Responsivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916666] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Ochi J, Tanaka K, Chujo Y. Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. Angew Chem Int Ed Engl 2020; 59:9841-9855. [PMID: 32009291 DOI: 10.1002/anie.201916666] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Indexed: 12/20/2022]
Abstract
o-Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o-carborane units were found to show suppressed aggregation-induced quenching and intense solid-state emission; they also show potential for the development of stimuli-responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation-induced emission, twisted intramolecular charge transfer in crystals, and environment-sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos-, vapo-, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o-carborane derivatives.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
12
|
Chen Z, Yu F, Liu R, Lin X, Yang S, Liu J, Chen B, Nagaraju S, Zeng M, Ding C, Fang X. Catalytic Annulation of Alkynyl 1,2-Diketone Leading to Hydroxy Spirocyclopenteneindenedione: An Organic Dye with Strong Crystallization-Induced Emission and Data Storage Application. Org Lett 2020; 22:2381-2385. [PMID: 32129632 DOI: 10.1021/acs.orglett.0c00581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An unprecedented cascade annulation between alkynyl 1,2-diketones and indene-1,3-diones is achieved for the first time, leading to a series of propeller-like large conjugated compounds in ≤99% yield. The products show strong crystallization-induced emission, with the colors changing from green to red. The fluorescence of the dye can be switched on and off by external acid/alkali stimuli, which can be utilized to develop a practical technology for rewritable information storage and security ink.
Collapse
Affiliation(s)
- Zhizhou Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Fang Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Rui Liu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | | | - Shuang Yang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | - Bolai Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | - Sakkani Nagaraju
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Min Zeng
- Fuzhou University, Fuzhou 350116, China
| | | | - Xinqiang Fang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
13
|
Yan J, Yang W, Zhang Q, Yan Y. Introducing borane clusters into polymeric frameworks: architecture, synthesis, and applications. Chem Commun (Camb) 2020; 56:11720-11734. [DOI: 10.1039/d0cc04709k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This feature article summarizes the preparation and applications of borane cluster-containing polymers and covers research progress and future trends of borane cluster-containing linear, dendritic, macrocyclic polymers and metal–organic frameworks.
Collapse
Affiliation(s)
- Jing Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Weihong Yang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Qiuyu Zhang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Yi Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| |
Collapse
|
14
|
Huang R, Liu H, Liu K, Wang G, Liu Q, Wang Z, Liu T, Miao R, Peng H, Fang Y. Marriage of Aggregation-Induced Emission and Intramolecular Charge Transfer toward High Performance Film-Based Sensing of Phenolic Compounds in the Air. Anal Chem 2019; 91:14451-14457. [DOI: 10.1021/acs.analchem.9b03096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Huijing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Quan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| |
Collapse
|
15
|
Martin KL, Smith JN, Young ER, Carter KR. Synthetic Emission Tuning of Carborane-Containing Poly(dihexylfluorene)s. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kara L. Martin
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jessica N. Smith
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Elizabeth R. Young
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Kenneth R. Carter
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Nishino K, Tanaka K, Chujo Y. Tuning of Sensitivity in Thermochromic Luminescence by Regulating Molecular Rotation Based on Triphenylamine‐Substituted
o
‐Carboranes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenta Nishino
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku, Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku, Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku, Kyoto 615-8510 Japan
| |
Collapse
|
17
|
Nishino K, Yamamoto H, Ochi J, Tanaka K, Chujo Y. Time‐Dependent Emission Enhancement of the Ethynylpyrene‐
o
‐Carborane Dyad and Its Application as a Luminescent Color Sensor for Evaluating Water Contents in Organic Solvents. Chem Asian J 2019; 14:1577-1581. [DOI: 10.1002/asia.201900396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Kenta Nishino
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Hideki Yamamoto
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Junki Ochi
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| |
Collapse
|
18
|
Ochi J, Tanaka K, Chujo Y. Improvement of Solid-State Excimer Emission of the Aryl-Ethynyl-o
-Carborane Skeleton by Acridine Introduction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
19
|
Ogoshi T, Maruyama K, Sakatsume Y, Kakuta T, Yamagishi TA, Ichikawa T, Mizuno M. Guest Vapor-Induced State Change of Structural Liquid Pillar[6]arene. J Am Chem Soc 2019; 141:785-789. [DOI: 10.1021/jacs.8b12253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Ogoshi
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | - Takahiro Ichikawa
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Biotechnology, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan
| | | |
Collapse
|
20
|
Martin KL, Krishnamurthy A, Strahan J, Young ER, Carter KR. Excited State Characterization of Carborane-Containing Poly(dihexyl fluorene)s. J Phys Chem A 2019; 123:1701-1709. [DOI: 10.1021/acs.jpca.8b07955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Lindsey Martin
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Aditi Krishnamurthy
- Department of Chemistry, Amherst College, P.O. Box 5000, Amherst, Massachusetts 01002, United States
| | - John Strahan
- Department of Chemistry, Amherst College, P.O. Box 5000, Amherst, Massachusetts 01002, United States
| | - Elizabeth R. Young
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Kenneth R. Carter
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
21
|
Yin Y, Li X, Yan S, Yan H, Lu C. Tetraphenylethylene-Carborane-Tetraphenylethylene Triad: Influence of Steric Bridge on Aggregation-Induced Emission Properties. Chem Asian J 2018; 13:3155-3159. [DOI: 10.1002/asia.201801172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yongheng Yin
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xiang Li
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Senbo Yan
- College of Mechanics and Materials; Hohai University; Nanjing 210000 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
- National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| |
Collapse
|
22
|
Bellomo C, Chaari M, Cabrera‐González J, Blangetti M, Lombardi C, Deagostino A, Viñas C, Gaztelumendi N, Nogués C, Nuñez R, Prandi C. Carborane‐BODIPY Dyads: New Photoluminescent Materials through an Efficient Heck Coupling. Chemistry 2018; 24:15622-15630. [PMID: 29999556 DOI: 10.1002/chem.201802901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Chiara Bellomo
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Torino Italy
| | - Mahdi Chaari
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) Campus de la UAB 08193-Bellatera Barcelona Spain
- Laboratoire des Sciences des Matériaux et de l'Environnement Faculté des Sciences de Sfax Université de Sfax B.P. 1171 3000 Sfax Tunisie
| | - Justo Cabrera‐González
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) Campus de la UAB 08193-Bellatera Barcelona Spain
| | - Marco Blangetti
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Torino Italy
| | - Chiara Lombardi
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Torino Italy
| | | | - Clara Viñas
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) Campus de la UAB 08193-Bellatera Barcelona Spain
| | - Nerea Gaztelumendi
- Departament de Biologia Cellular, Fisiologia i Immunologia Universitat Autònoma de Barcelona 08193-Bellaterra Barcelona Spain
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia Universitat Autònoma de Barcelona 08193-Bellaterra Barcelona Spain
| | - Rosario Nuñez
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) Campus de la UAB 08193-Bellatera Barcelona Spain
| | - Cristina Prandi
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Torino Italy
| |
Collapse
|
23
|
|
24
|
Kim SY, Ma SY, Kang SO, Lee JD. B-phenylated o-carboranes and its chromium derivatives: Synthesis, electrochemical properties, and X-ray structural studies. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Liu K, Shang C, Wang Z, Qi Y, Miao R, Liu K, Liu T, Fang Y. Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat Commun 2018; 9:1695. [PMID: 29703929 PMCID: PMC5923207 DOI: 10.1038/s41467-018-04119-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/03/2018] [Indexed: 11/24/2022] Open
Abstract
Sensitive and rapid identification of illicit drugs in a non-contact mode remains a challenge for years. Here we report three film-based fluorescent sensors showing unprecedented sensitivity, selectivity, and response speed to the existence of six widely abused illicit drugs, including methamphetamine (MAPA), ecstasy, magu, caffeine, phenobarbital (PB), and ketamine in vapor phase. Importantly, for these drugs, the sensing can be successfully performed after 5.0 × 105, 4.0 × 105, 2.0 × 105, 1.0 × 105, 4.0 × 104, and 2.0 × 102 times dilution of their saturated vapor with air at room temperature, respectively. Also, presence of odorous substances (toiletries, fruits, dirty clothes, etc.), water, and amido-bond-containing organic compounds (typical organic amines, legal drugs, and different amino acids) shows little effect upon the sensing. More importantly, discrimination and identification of them can be realized by using the sensors in an array way. Based upon the discoveries, a conceptual, two-sensor based detector is developed, and non-contact detection of the drugs is realized. Sensitive and rapid identification of illicit drugs in a non-contact mode remains a challenge. Here, the authors report three film-based fluorescent sensors showing remarkable sensitivity, selectivity and response speed to six widely abused illicit drugs in vapor phase.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yanyu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
26
|
Naito H, Uemura K, Morisaki Y, Tanaka K, Chujo Y. Enhancement of Luminescence Efficiencies by Thermal Rearrangement fromortho- tometa-Carborane in Bis-Carborane-Substituted Acenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hirofumi Naito
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Kyoya Uemura
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| |
Collapse
|
27
|
Nishino K, Uemura K, Tanaka K, Morisaki Y, Chujo Y. Modulation of the cis
- and trans
-Conformations in Bis-o
-carborane Substituted Benzodithiophenes and Emission Enhancement Effect on Luminescent Efficiency by Solidification. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701641] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kenta Nishino
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku 8510 Kyoto 615- Japan
| | - Kyoya Uemura
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku 8510 Kyoto 615- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku 8510 Kyoto 615- Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku 8510 Kyoto 615- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku 8510 Kyoto 615- Japan
| |
Collapse
|
28
|
Nishino K, Uemura K, Tanaka K, Chujo Y. Dual emission via remote control of molecular rotation of o-carborane in the excited state by the distant substituents in tolane-modified dyads. NEW J CHEM 2018. [DOI: 10.1039/c7nj04283c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-emissive properties are reported based on the tolane-o-carborane dyads with various substituents.
Collapse
Affiliation(s)
- Kenta Nishino
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kyoya Uemura
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
29
|
Nishino K, Uemura K, Gon M, Tanaka K, Chujo Y. Enhancement of Aggregation-Induced Emission by Introducing Multiple o-Carborane Substitutions into Triphenylamine. Molecules 2017; 22:molecules22112009. [PMID: 29156590 PMCID: PMC6150215 DOI: 10.3390/molecules22112009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
The enhancement of aggregation-induced emission (AIE) is presented on the basis of the strategy for improving solid-state luminescence by employing multiple o-carborane substituents. We synthesized the modified triphenylamines with various numbers of o-carborane units and compared their optical properties. From the optical measurements, the emission bands from the twisted intramolecular charge transfer (TICT) state were obtained from the modified triphenylamines. It was notable that emission efficiencies of the multi-substituted triphenylamines including two or three o-carborane units were enhanced 6- to 8-fold compared to those of the mono-substituted triphenylamine. According to mechanistic studies, it was proposed that the single o-carborane substitution can load the AIE property via the TICT mechanism. It was revealed that the additional o-carborane units contribute to improving solid-state emission by suppressing aggregation-caused quenching (ACQ). Subsequently, intense AIEs were obtained. This paper presents a new role of the o-carborane substituent in the enhancement of AIEs.
Collapse
Affiliation(s)
- Kenta Nishino
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kyoya Uemura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
30
|
|
31
|
Nishino K, Yamamoto H, Tanaka K, Chujo Y. Solid-State Thermochromic Luminescence through Twisted Intramolecular Charge Transfer and Excimer Formation of a Carborane−Pyrene Dyad with an Ethynyl Spacer. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700390] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kenta Nishino
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Hideki Yamamoto
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
32
|
Cabrera-González J, Bhattacharyya S, Milián-Medina B, Teixidor F, Farfán N, Arcos-Ramos R, Vargas-Reyes V, Gierschner J, Núñez R. Tetrakis{[(p-dodecacarboranyl)methyl]stilbenyl}ethylene: A Luminescent Tetraphenylethylene (TPE) Core System. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Justo Cabrera-González
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra, Barcelona Spain
| | - Santanu Bhattacharyya
- Madrid Institute for Advanced Studies - IMDEA Nanoscience; Ciudad Universitaria de Cantoblanco; C/ Faraday 9 28049 Madrid Spain
| | - Begoña Milián-Medina
- Madrid Institute for Advanced Studies - IMDEA Nanoscience; Ciudad Universitaria de Cantoblanco; C/ Faraday 9 28049 Madrid Spain
- Department for Physical Chemistry; Faculty of Chemistry; University of Valencia; Avda. Dr. Moliner 50 46100 Burjassot, Valencia Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra, Barcelona Spain
| | - Norberto Farfán
- Facultad de Química; Departamento de Química Orgánica; Universidad Nacional Autónoma de México; 04510 Ciudad de México México
| | - Rafael Arcos-Ramos
- Facultad de Química; Departamento de Química Orgánica; Universidad Nacional Autónoma de México; 04510 Ciudad de México México
| | - Verónica Vargas-Reyes
- Facultad de Química; Departamento de Química Orgánica; Universidad Nacional Autónoma de México; 04510 Ciudad de México México
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies - IMDEA Nanoscience; Ciudad Universitaria de Cantoblanco; C/ Faraday 9 28049 Madrid Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona; ICMAB-CSIC; Campus de la UAB 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
33
|
Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Luminescence Color Tuning from Blue to Near Infrared of Stable Luminescent Solid Materials Based on Bis-o-Carborane-Substituted Oligoacenes. Chem Asian J 2017. [DOI: 10.1002/asia.201700815] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hirofumi Naito
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Kenta Nishino
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Present address: Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; 2-1 Gakuen, Sanda Hyogo 669-1337 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Katsura, Nishikyo-ku; Kyoto 615-8510 Japan
| |
Collapse
|
34
|
Ogoshi T, Shimada Y, Sakata Y, Akine S, Yamagishi TA. Alkane-Shape-Selective Vapochromic Behavior Based on Crystal-State Host-Guest Complexation of Pillar[5]arene Containing One Benzoquinone Unit. J Am Chem Soc 2017; 139:5664-5667. [PMID: 28414220 DOI: 10.1021/jacs.7b00631] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colored crystals of pillar[5]arene containing one benzoquinone unit were found to exhibit alkane-shape-selective vapochromic behavior. Activated pillar[5]arene crystals, prepared by removing solvated methanol from pillar[5]arene crystals, changed color from dark-brown to light-red after exposure to linear alkane vapors; however, no color changes were observed on exposure to branched or cyclic alkanes. Uptake of methanol vapor by the activated crystals induced a different color change, from dark-brown to black. This multi-vapochromism results from the different intermolecular π-stacking interactions between the benzoquinone and 1,4-diethoxybenzene units in the alkane- and methanol-containing crystals. Unlike most known vapochromic materials, these pillar[5]arene-based materials were highly stable; after uptake of n-alkanes or methanol the color of the crystals did not change after storage in air for 3 weeks. This is because the included guests were stabilized in the cavity by multiple CH/π interactions.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,JST, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuo Shimada
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
35
|
Gon M, Morisaki Y, Chujo Y. Optically Active Phenylethene Dimers Based on Planar Chiral Tetrasubstituted [2.2]Paracyclophane. Chemistry 2017; 23:6323-6329. [DOI: 10.1002/chem.201605598] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku, Katsura; Kyoto 615-8510 Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku, Katsura; Kyoto 615-8510 Japan
- Present address: School of Science and Technology; Kwansei Gakuin University, 2-1 Gakuen, Sanda; Hyogo 669-1337 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku, Katsura; Kyoto 615-8510 Japan
| |
Collapse
|
36
|
Feng LZ, Shi XF, Xie J, Zheng DM, Niu HH, Huang YB, Ye LY, Yin YW, Tu S. Synthesis, characterization, and electroluminescent properties of monodisperse oligofluorenes as emissive materials for organic electroluminescent devices. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Nishino K, Morisaki Y, Tanaka K, Chujo Y. Electron-donating abilities and luminescence properties of tolane-substituted nido-carboranes. NEW J CHEM 2017. [DOI: 10.1039/c7nj02438j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The luminescence properties of nido-carborane-substituted tolane derivatives were investigated.
Collapse
Affiliation(s)
- Kenta Nishino
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
38
|
Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Solid-State Emission of the Anthracene-o-Carborane Dyad from the Twisted-Intramolecular Charge Transfer in the Crystalline State. Angew Chem Int Ed Engl 2016; 56:254-259. [PMID: 27911472 DOI: 10.1002/anie.201609656] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Indexed: 02/04/2023]
Abstract
The emission process of the o-carborane dyad with anthracene originating from the twisted intramolecular charge transfer (TICT) state in the crystalline state is described. The anthracene-o-carborane dyad was synthesized and its optical properties were investigated. Initially, the dyad had aggregation- and crystallization-induced emission enhancement (AIEE and CIEE) properties via the intramolecular charge transfer (ICT) state. Interestingly, the dyad presented the dual-emissions assigned to both locally excited (LE) and ICT states in solution. From the mechanistic studies and computer calculations, it was indicated that the emission band from the ICT should be attributable to the TICT emission. Surprisingly, even in the crystalline state, the TICT emission was observed. It was proposed from that the compact sphere shape of o-carborane would allow for rotation even in the condensed state.
Collapse
Affiliation(s)
- Hirofumi Naito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kenta Nishino
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
39
|
Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Solid‐State Emission of the Anthracene‐
o
‐Carborane Dyad from the Twisted‐Intramolecular Charge Transfer in the Crystalline State. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609656] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hirofumi Naito
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenta Nishino
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- Department of Applied Chemistry for Environment School of Science and Technology Kwansei Gakuin University 2-1 Gakuen, Sanda Hyogo 669-1337 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
40
|
Abstract
In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.
Collapse
Affiliation(s)
- Sanjoy Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
41
|
Wang D, Feng S, Liu H. Fluorescence-Tuned Polyhedral Oligomeric Silsesquioxane-Based Porous Polymers. Chemistry 2016; 22:14319-27. [PMID: 27533795 DOI: 10.1002/chem.201602688] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/21/2022]
Abstract
Two series of new polyhedral oligomeric silsesquioxane (POSS)-based fluorescent hybrid porous polymers, HPP-1 and HPP-2, have been prepared by the Heck reaction of octavinylsilsesquioxane with 2,2',7,7'-tetrabromo-9,9'-spirobifluorene and 1,3,6,8-tetrabromopyrene, respectively. Three sets of reaction conditions were employed to assess their effect on fluorescence. These materials exhibit tunable fluorescence from nearly no fluorescence to bright fluorescence both in the solid state and dispersed in ethanol under UV light irradiation by simply altering the reaction conditions. We speculated that the difference may be attributable to the fluorescence quenching induced by Et3 N, P(o-CH3 Ph)3 , and their hydrogen bromide salts employed in the reactions. This finding could give valuable suggestions for the construction of porous polymers with tunable/controllable fluorescence, especially those prepared by Heck and Sonogashira reactions in which these quenchers are used as organic bases or co-catalysts. In addition, the porosities can also be tuned, but different trends in porosity have been found in these two series of polymers, which suggests that various factors should be carefully considered in the preparation of porous polymers with tunable/controllable porosity. Furthermore, HPP-1 c showed moderate CO2 uptake and fluorescence that was efficiently quenched by nitroaromatic explosives, thereby indicating that these materials could be utilized as solid absorbents for the capture and storage of CO2 and as sensing agents for the detection of explosives.
Collapse
Affiliation(s)
- Dengxu Wang
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan, P.R. China. .,Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China.
| | - Shengyu Feng
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan, P.R. China. .,Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China.
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China.
| |
Collapse
|
42
|
Synthesis, characterization and thermal stability of novel carborane-containing epoxy novolacs. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1832-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Affiliation(s)
- Pierpaolo Minei
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Via Moruzzi 13 56124 Pisa Italy
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Via Moruzzi 13 56124 Pisa Italy
- CNR-Istituto per i Processi Chimico Fisici; UOS Pisa, Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
44
|
Qi S, Wang H, Han G, Yang Z, Zhang XA, Jiang S, Lu Y. Synthesis, characterization, and curing behavior of carborane-containing benzoxazine resins with excellent thermal and thermo-oxidative stability. J Appl Polym Sci 2016. [DOI: 10.1002/app.43488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shicheng Qi
- Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Hongrui Wang
- Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Guo Han
- Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Zhen Yang
- Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Xiao A Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Shengling Jiang
- Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Yafei Lu
- Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education; College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
45
|
Böhling L, Brockhinke A, Kahlert J, Weber L, Harder RA, Yufit DS, Howard JAK, MacBride JAH, Fox MA. Substituent Effects on the Fluorescence Properties ofortho-Carboranes: Unusual Emission Behaviour inC-(2′-Pyridyl)-ortho-carboranes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501284] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Khattab TA, Tiu BDB, Adas S, Bunge SD, Advincula RC. Solvatochromic, thermochromic and pH-sensory DCDHF-hydrazone molecular switch: response to alkaline analytes. RSC Adv 2016. [DOI: 10.1039/c6ra24113a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanostructures fabricated from multi-stimuli responsive DCDHF-hydrazone molecular switches to function as colorimetric reversible gas probes.
Collapse
Affiliation(s)
- Tawfik A. Khattab
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
- Dyeing, Printing and Auxiliaries Department
| | - Brylee David B. Tiu
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Sonya Adas
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
- Department of Chemistry and Chemistry Research Center
| | - Scott D. Bunge
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Rigoberto C. Advincula
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| |
Collapse
|
47
|
Tu D, Leong P, Li Z, Hu R, Shi C, Zhang KY, Yan H, Zhao Q. A carborane-triggered metastable charge transfer state leading to spontaneous recovery of mechanochromic luminescence. Chem Commun (Camb) 2016; 52:12494-12497. [DOI: 10.1039/c6cc07093k] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spontaneous recovery of mechanochromic luminescence was realized by carborane-functionalized anthracene derivatives.
Collapse
Affiliation(s)
- Deshuang Tu
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210023
- China
| | - Pakkin Leong
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210023
- China
| | - Zhihong Li
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210023
- China
| | - Rongrong Hu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Chao Shi
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210023
- China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210023
- China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
48
|
Li C, Liu X, He S, Huang Y, Cui D. Synthesis and AIE properties of PEG–PLA–PMPC based triblock amphiphilic biodegradable polymers. Polym Chem 2016. [DOI: 10.1039/c5py01849h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis of a novel AIE-active micelle based on living immortal polymerization of cyclic esters and a “click” reaction of azide functionalized TPE is described.
Collapse
Affiliation(s)
- Chuanyang Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
49
|
|
50
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 513.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|