1
|
Guo R, Kan YC, Xu Y, Han LY, Bu WH, Han LX, Qi YY, Chu JJ. Preparation and efficacy of antibacterial methacrylate monomer-based polymethyl methacrylate bone cement containing N-halamine compounds. Front Bioeng Biotechnol 2024; 12:1414005. [PMID: 38863494 PMCID: PMC11165117 DOI: 10.3389/fbioe.2024.1414005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Our objective in this study was to prepare a novel type of polymethyl methacrylate (PMMA) bone cement, analyze its material properties, and evaluate its safety and antibacterial efficacy. Methods A halamine compound methacrylate antibacterial PMMA bone cement containing an N-Cl bond structure was formulated, and its material characterization was determined with Fourier transform infrared spectroscopy (FT-IR) and 1H-NMR. The antibacterial properties of the material were studied using contact bacteriostasis and releasing-type bacteriostasis experiments. Finally, in vitro and in vivo biocompatibility experiments were performed to analyze the toxic effects of the material on mice and embryonic osteoblast precursor cells (MC3T3-E1). Results Incorporation of the antibacterial methacrylate monomer with the N-halamine compound in the new antibacterial PMMA bone cement significantly increased its contact and releasing-type bacteriostatic performance against Staphylococcus aureus. Notably, at 20% and 25% additions of N-halamine compound, the contact and releasing-type bacteriostasis rates of bone cement samples reached 100% (p < 0.001). Furthermore, the new antibacterial bone cement containing 5%, 10%, and 15% N-halamine compounds showed good biocompatibility in vitro and in vivo. Conclusion In this study, we found that the novel antibacterial PMMA bone cement with N-halamine compound methacrylate demonstrated good contact and releasing-type bacteriostatic properties against S. aureus. In particular, bone cement containing a 15% N-halamine monomer exhibited strong antibacterial properties and good in vitro and in vivo biocompatibility.
Collapse
Affiliation(s)
- Rui Guo
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yang Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lu-Yang Han
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Wen-Han Bu
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Long-Xu Han
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yin-Yu Qi
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Surface functionalization of polyurethanes: A critical review. Adv Colloid Interface Sci 2024; 325:103100. [PMID: 38330882 DOI: 10.1016/j.cis.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Synthetic polymers, particularly polyurethanes (PUs), have revolutionized bioengineering and biomedical devices due to their customizable mechanical properties and long-term stability. However, the inherent hydrophobic nature of PU surfaces arises common issues such as high friction, strong protein adsorption, and thrombosis, especially in the physiological environment of blood contact. To overcome these issues, researchers have explored various modification techniques to improve the surface biofunctionality of PUs. In this review, we have systematically summarized several typical surface modification methods including surface plasma modification, surface oxidation-induced grafting polymerization, isocyanate-based chemistry coupling, UV-induced surface grafting polymerization, adhesives-assisted attachment strategy, small molecules-bridge grafting, solvent evaporation technique, and hydrogen bonding interaction. Correspondingly, the advantages, limitations, and future prospects of these surface modification methods were discussed. This review provides an important guidance or tool for developing surface functionalized PUs in the fields of bioengineering and medical devices.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhang G, Li Y, Ke Q, Bai J, Luo F, Zhang J, Ding Y, Chen J, Liu P, Wang S, Gao C, Yang M. Preparation of Rechargeable Antibacterial Polypropylene/N-Halamine Materials Based on Melt Blending and Surface Segregation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47531-47540. [PMID: 37787377 DOI: 10.1021/acsami.3c10257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Polypropylene (PP) has been widely used in health care and food packaging fields, however, it lacks antibacterial properties. Herein, we prepared the polymeric antibacterial agents (MPP-NDAM) by an in situ amidation reaction between 2,4-diamino-6-dialkylamino-1,3,5-triazine (NDAM) and maleic anhydride grafted polypropylene (MPP) using the melt grafting method. The effects of reaction time and monomer content on the grafting degree of N-halamine were investigated, and a grafting degree of 4.86 wt % was achieved under the optimal reaction conditions. PP/MPP-NDAM composites were further obtained by a melt blending process between PP and MPP-NDAM. With the adoption of surface segregation technology, the content of N-halamine structure on the surface of PP/MPP-NDAM composites was significantly increased. The antibacterial tests showed that the PP/MPP-NDAM composite could achieve 99.9% bactericidal activity against 1.0 × 107 CFU/mL of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 10 and 5 min of contact, respectively. The antibacterial effect became more pronounced with the prolongation of chlorinated time, and it could achieve 99.9% bactericidal activity against E. coli within merely 1 min of contact.
Collapse
Affiliation(s)
- Ge Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuke Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qining Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Junchen Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Fushuai Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiacheng Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanfen Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Juan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chong Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Marino F, Mazzotta M, Pascale MR, Derelitto C, Girolamini L, Cristino S. First water safety plan approach applied to a Dental Clinic complex: identification of new risk factors associated with Legionella and P. aeruginosa contamination, using a novel sampling, maintenance and management program. J Oral Microbiol 2023; 15:2223477. [PMID: 37346998 PMCID: PMC10281406 DOI: 10.1080/20002297.2023.2223477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Dental unit waterlines (DUWLs) represent a complex environment able to promote microbial contamination, due to functional, mechanical and practical risk factors. According to a water safety plan approach, the main goal is to preserve the health of dentists, dental staff and patients. The aim of this study is to develop a DUWLs water safety plan that is able to support correct and effective maintenance and disinfection procedures. Three different water systems serve 60 dental chairs: (i) water that comes directly from municipal water (Type A), (ii) water supplied by municipal water and water bottles (Type B) and (iii) water supplied only via water bottles (Type C). For each type, Legionella and Pseudomonas aeruginosa contamination was studied, by applying a new sampling scheme, based on separate sampling from water bottles, cup filler and handpieces. Type B DUWL is the only type of DUWL contaminated by L. pneumophila (ST 59) and L. anisa (mean contamination: 608.33 ± 253.33 cfu/L) detected in cup filler and handpieces, as well as the high presence of P. aeruginosa (44.42 ± 13.25 cfu/100 mL). Two subsequent shock treatments and resampling procedures were performed by increasing disinfectant dosage and contact time and removing some DUWL components linked to biofilm growth in DUWLs. A significant reduction of contamination was obtained for both microorganisms (Legionella spp.: -100%, p < 0.001 and P. aeruginosa: -99.86%, p = 0.006). The sampling strategy proposed allows us to identify the source of contamination and better focus on the maintenance and disinfection procedures. DUWLs represent an environment that requires a multidisciplinary approach, combining the knowledge of all DUWL components to correct procedures that are able to preserve the health of personnel and patients, as well as guaranteeing DUWLs' safe functionality.
Collapse
Affiliation(s)
- Federica Marino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Carlo Derelitto
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| |
Collapse
|
5
|
Lan G, Chu X, Li C, Zhang C, Miao G, Li W, Peng F, Zhao X, Li M. Surface modification of titanium with antibacterial porous N-halamine coating to prevent peri-implant infection. Biomed Mater 2022; 18. [PMID: 36317281 DOI: 10.1088/1748-605x/ac9e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Peri-implant infection remains one of the greatest threats to orthopedics. The construction of bone implants with good antibacterial and osteogenic properties is beneficial for reducing the risk of implant-related infections and healing bone defects. In this study, N-halamine coating (namely N-Cl) was grafted onto alkali-heat treated titanium (Ti) using polydopamine to endow Ti-based orthopedic implants with strong bactericidal activity. Surface characterization revealed that the N-Cl coating has porous structure loaded with active chlorine (Cl+). The N-Cl coating also provided micro/nano-structured Ti surfaces with excellent antibacterial ability via transformation between N-H and N-Cl, and approximately 100% disinfection was achieved. Furthermore, the as-prepared N-Cl coating exhibited good biocompatibility and osteogenesis abilityin vitro. These results indicate that applying N-Cl coatings on Ti could prevent and treat peri-implant infections.
Collapse
Affiliation(s)
- Guobo Lan
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Xiao Chu
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China.,Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Chaohui Li
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Chi Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Guiqiang Miao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Wenyong Li
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Xiaodong Zhao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| |
Collapse
|
6
|
Wu M, Shi Z, Yu X, Xu Y, Jin X, Zhang L, Fu B. Disinfection methods of dental unit waterlines contamination: a systematic review. J Med Microbiol 2022; 71. [PMID: 35670283 DOI: 10.1099/jmm.0.001540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Severe contamination of dental unit waterlines was found in healthcare settings. The benefits of decontamination methods are controversial. The aim of this review was to systematically evaluate disinfection methods in contamination control of dental unit waterlines.Methods. The terms 'dental unit waterline(s) or DUWL(s) or dental unit water line(s)' were searched through PubMed, Cochrane Library, Embase, Web of Science and Scopusup to 31 May 2021. The DUWLs' output water was incubated on R2A agar at 20-28 °C for 5-7 days to evaluate heterotrophic mesophilic bacteria. The risk of bias was evaluated by a modified Newcastle-Ottawa quality assessment scale.Results. Eighteen papers from the literature were included. One study indicated that water supply played a crucial role in disinfecting DUWLs. Three studies indicated that flushing decreased bacteria counts but did not meet the American CDC standard (500 c.f.u. ml-1). All chlorine- and peroxide-containing disinfectants except sodium hypochlorite in one of 15 studies as well as three mouthrinses and citrus botanical extract achieved the standard (≤500 c.f.u. ml-1). The included studies were of low (1/18), moderate (6/18) and high (11/18) quality.Conclusion. Independent water reservoirs are recommended for disinfecting DUWLs using distilled water. Flushing DUWLs should be combined with disinfections. Nearly all the chlorine-, chlorhexidine- and peroxide-containing disinfectants, mouthrinses and citrus botanical extract meet the standard for disinfecting DUWLs. Alkaline peroxide would lead to tube blockage in the DUWLs. Regularly changing disinfectants can reduce the risk of occurrence of disinfectant-resistant strains of microbes.
Collapse
Affiliation(s)
- Mengting Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, PR China
| | - Zhiwei Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, PR China
| | - Xuefen Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, PR China
| | - Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, PR China
| | - Xinyang Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, PR China
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, PR China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, PR China
| |
Collapse
|
7
|
Imparting antibacterial adhesion property to anion exchange membrane by constructing negatively charged functional layer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Liu Q, Zhang Y, Liu W, Wang L, Choi YW, Fulton M, Fuchs S, Shariati K, Qiao M, Bernat V, Ma M. A Broad-Spectrum Antimicrobial and Antiviral Membrane Inactivates SARS-CoV-2 in Minutes. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103477. [PMID: 34512227 PMCID: PMC8420574 DOI: 10.1002/adfm.202103477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/25/2021] [Indexed: 05/27/2023]
Abstract
SARS-CoV-2, the virus that caused the COVID-19 pandemic, can remain viable and infectious on surfaces for days, posing a potential risk for fomite transmission. Liquid-based disinfectants, such as chlorine-based ones, have played an indispensable role in decontaminating surfaces but they do not provide prolonged protection from recontamination. Here a safe, inexpensive, and scalable membrane with covalently immobilized chlorine, large surface area, and fast wetting that exhibits long-lasting, exceptional killing efficacy against a broad spectrum of bacteria and viruses is reported. The membrane achieves a more than 6 log reduction within several minutes against all five bacterial strains tested, including gram-positive, gram-negative, and drug-resistant ones as well as a clinical bacterial cocktail. The membrane also efficiently deactivated nonenveloped and enveloped viruses in minutes. In particular, a 5.17 log reduction is achieved against SARS-CoV-2 after only 10 min of contact with the membrane. This membrane may be used on high-touch surfaces in healthcare and other public facilities or in air filters and personal protective equipment to provide continuous protection and minimize transmission risks.
Collapse
Affiliation(s)
- Qingsheng Liu
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Yidan Zhang
- Department of Fiber Science and Apparel DesignCornell UniversityIthacaNY14853USA
- Halomine Inc.IthacaNY14853USA
| | - Wanjun Liu
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Long‐Hai Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | | | | | - Stephanie Fuchs
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | | | - Victorien Bernat
- Department of Materials Science and EngineeringCornell UniversityIthacaNY14853USA
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
9
|
Fan C, Gu H, Liu L, Zhu H, Yan J, Huo Y. Distinct Microbial Community of Accumulated Biofilm in Dental Unit Waterlines of Different Specialties. Front Cell Infect Microbiol 2021; 11:670211. [PMID: 34222041 PMCID: PMC8248794 DOI: 10.3389/fcimb.2021.670211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
The contamination of dental unit waterlines (DUWLs) is a serious problem and directly affects the dental care. This study aims to explore the microbial community of biofilm in DUWL from different specialties and investigate the associated factors. A total of 36 biofilm samples from 18 DUWL of six specialties (i.e., prosthodontics, orthodontics, pediatrics, endodontics, oral surgery, and periodontics) at two time points (i.e., before and after daily dental practice) were collected with a novel method. Genomic DNA of samples was extracted, and then 16S ribosomal DNA (rDNA) (V3–V4 regions) and ITS2 gene were amplified and sequenced. Kruskal–Wallis and Wilcoxon rank test were adopted for statistical analysis. Microbial community with high diversity of bacteria (631 genera), fungi (193 genera), and viridiplantae was detected in the biofilm samples. Proteobacteria was the dominant bacteria (representing over 65.74–95.98% of the total sequences), and the dominant fungi was Ascomycota (93.9–99.3%). Microorganisms belonging to multiple genera involved in human diseases were detected including 25 genera of bacteria and eight genera of fungi, with relative abundance of six genera over 1% (i.e., Acinetobacter, Pseudomonas, Enterobacter, Aspergillus, Candida, and Penicillium). The biofilm microbiome may be influenced by the characteristics of dental specialty and routine work to some extent. The age of dental chair unit and overall number of patients had the strongest impact on the overall bacteria composition, and the effect of daily dental practices (associated with number of patients and dental specialty) on the fungi composition was the greatest. For the first time, biofilm in DUWL related to dental specialty was comprehensively evaluated, with more abundance of bacterial and fungal communities than in water samples. Biofilm accumulation with daily work and multiple kinds of opportunistic pathogen emphasized the infectious risk with dental care and the importance of biofilm control.
Collapse
Affiliation(s)
- Cancan Fan
- Zhujiang New Town Clinic, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haijing Gu
- Zhujiang New Town Clinic, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Limin Liu
- Zhujiang New Town Clinic, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haiwei Zhu
- Zhujiang New Town Clinic, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Yan
- Zhujiang New Town Clinic, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yongbiao Huo
- Zhujiang New Town Clinic, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
10
|
Wu S, Xu J, Zou L, Luo S, Yao R, Zheng B, Liang G, Wu D, Li Y. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat Commun 2021; 12:3303. [PMID: 34083518 PMCID: PMC8175680 DOI: 10.1038/s41467-021-23069-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2021] [Indexed: 01/14/2023] Open
Abstract
Peri-implant infection is one of the biggest threats to the success of dental implant. Existing coatings on titanium surfaces exhibit rapid decrease in antibacterial efficacy, which is difficult to promisingly prevent peri-implant infection. Herein, we report an N-halamine polymeric coating on titanium surface that simultaneously has long-lasting renewable antibacterial efficacy with good stability and biocompatibility. Our coating is powerfully biocidal against both main pathogenic bacteria of peri-implant infection and complex bacteria from peri-implantitis patients. More importantly, its antibacterial efficacy can persist for a long term (e.g., 12~16 weeks) in vitro, in animal model, and even in human oral cavity, which generally covers the whole formation process of osseointegrated interface. Furthermore, after consumption, it can regain its antibacterial ability by facile rechlorination, highlighting a valuable concept of renewable antibacterial coating in dental implant. These findings indicate an appealing application prospect for prevention and treatment of peri-implant infection.
Collapse
Affiliation(s)
- Shuyi Wu
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Jianmeng Xu
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Leiyan Zou
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Shulu Luo
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Run Yao
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Bingna Zheng
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guobin Liang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Dingcai Wu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yan Li
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China.
| |
Collapse
|
11
|
Wang LS, Gopalakrishnan S, Rotello VM. Tailored Functional Surfaces Using Nanoparticle and Protein "Nanobrick" Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10993-11006. [PMID: 30543751 DOI: 10.1021/acs.langmuir.8b03235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface properties are an essential feature in a wide range of functional materials. In this article, we summarize strategies developed in our group that employ nanoparticles and proteins as nanobricks to create thin-film coatings on surfaces. These coatings contain tailorable surface functionality based on the properties of the predesigned nanobricks, parlaying both the chemical and structural features of the precursor particles and proteins. This strategy is versatile, providing the rapid generation of both uniform and patterned coatings that provide "plug-and-play" customizable surfaces for materials and biomedical applications.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Sanjana Gopalakrishnan
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
12
|
Ma Y, Li J, Si Y, Huang K, Nitin N, Sun G. Rechargeable Antibacterial N-Halamine Films with Antifouling Function for Food Packaging Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17814-17822. [PMID: 31022343 DOI: 10.1021/acsami.9b03464] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Pathogenic microbial contamination from microbial adhesion and subsequent formation of the biofilm on surfaces of plastic food packaging materials, especially with robust resistance to antimicrobial agents, is a major reason for the outbreak of foodborne infections. Conventional strategies in controlling the contaminations are significantly limited either by biofouling or by the irreversible consumption of antimicrobial agents. Herein, we report a robust methodology to create rechargeable biocidal poly(vinyl alcohol- co-ethylene) films (SBMA@HAF films) with antifouling function via chemically incorporating both N-halamine (HAF) and zwitterionic moieties [[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA)]. The promise of the design exhibits three features to defeat bacterial contaminations: (i) zwitterionic moieties can effectively reduce bacterial attachment onto the films, (ii) N-halamine with robust rechargeable biocidal activity can rapidly kill any attached bacteria, and (iii) any inactivated bacterial debris can be easily released to avoid biofilm formation due to the superhydrophilicity of the zwitterions. The resulting SBMA@HAF films exhibit integrated properties of high transparency, robust mechanical property, great hydrophilicity, ease of chlorine recharging (>250 ppm), long-term stability, high biocidal efficacy (>99.9999% via contact killing), and promising antifouling functions, which enable the SBMA@HAF films to serve as a biocidal material in food packaging applications.
Collapse
|
13
|
Zhang S, Demir B, Ren X, Worley SD, Broughton RM, Huang TS. Synthesis of antibacterial N-halamine acryl acid copolymers and their application onto cotton. J Appl Polym Sci 2018. [DOI: 10.1002/app.47426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shumin Zhang
- College of Textiles and Clothing; Jiangnan University; 214122, Jiangsu China
| | - Buket Demir
- Department of Chemistry and Biochemistry; Auburn University; Auburn Alabama 36849
| | - Xuehong Ren
- College of Textiles and Clothing; Jiangnan University; 214122, Jiangsu China
| | - S. D. Worley
- Department of Chemistry and Biochemistry; Auburn University; Auburn Alabama 36849
| | - R. M. Broughton
- Center for Polymers and Advanced Composites; Auburn University; Auburn Alabama 36849
| | - Tung-Shi Huang
- Department of Poultry Science; Auburn University; Auburn Alabama 36849
| |
Collapse
|
14
|
Demir B, Broughton RM, Huang TS, Bozack MJ, Worley SD. Polymeric Antimicrobial N-Halamine-Surface Modification of Stainless Steel. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Buket Demir
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - R. M. Broughton
- Center for Polymers and Advanced Composites, Department of Mechanical
Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - T. S. Huang
- Department of Poultry Science, Auburn University, Auburn, Alabama 36849, United States
| | - M. J. Bozack
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - S. D. Worley
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
15
|
N-Halamine Biocidal Materials with Superior Antimicrobial Efficacies for Wound Dressings. Molecules 2017; 22:molecules22101582. [PMID: 28934124 PMCID: PMC6151735 DOI: 10.3390/molecules22101582] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/22/2023] Open
Abstract
This work demonstrated the successful application of N-halamine technology for wound dressings rendered antimicrobial by facile and inexpensive processes. Four N-halamine compounds, which possess different functional groups and chemistry, were synthesized. The N-halamine compounds, which contained oxidative chlorine, the source of antimicrobial activity, were impregnated into or coated onto standard non-antimicrobial wound dressings. N-halamine-employed wound dressings inactivated about 6 to 7 logs of Staphylococcus aureus and Pseudomonas aeruginosa bacteria in brief periods of contact time. Moreover, the N-halamine-modified wound dressings showed superior antimicrobial efficacies when compared to commercially available silver wound dressings. Zone of inhibition tests revealed that there was no significant leaching of the oxidative chlorine from the materials, and inactivation of bacteria occurred by direct contact. Shelf life stability tests showed that the dressings were stable to loss of oxidative chlorine when they were stored for 6 months in dark environmental conditions. They also remained stable under florescent lighting for up to 2 months of storage. They could be stored in opaque packaging to improve their shelf life stabilities. In vitro skin irritation testing was performed using a three-dimensional human reconstructed tissue model (EpiDerm™). No potential skin irritation was observed. In vitro cytocompatibility was also evaluated. These results indicate that N-halamine wound dressings potentially can be employed to prevent infections, while at the same time improving the healing process by eliminating undesired bacterial growth.
Collapse
|
16
|
Dong A, Wang YJ, Gao Y, Gao T, Gao G. Chemical Insights into Antibacterial N-Halamines. Chem Rev 2017; 117:4806-4862. [DOI: 10.1021/acs.chemrev.6b00687] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alideertu Dong
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Yan-Jie Wang
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Yangyang Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Tianyi Gao
- College
of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Ge Gao
- College
of Chemistry, Jilin University, Changchun 130021, People’s Republic of China
| |
Collapse
|
17
|
Cataldi ME, Al Rakayan S, Arcuri C, Condò R. Dental unit wastewater, a current environmental problem: a sistematic review. ORAL & IMPLANTOLOGY 2017; 10:354-359. [PMID: 29682252 DOI: 10.11138/orl/2017.10.4.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dental unit waters are divided in two different groups, because of their chemical and microbial composition proprieties: in the first there is the "incoming dental unit water", drinking water that arrived directly in the dental chair unit through the municipal water system; in the second there is the "waste water", that represents the whole dental unit waste water. Regarding the lack of a complete systematic review on the quality of dental unit wastewater, the aim of the current research was to systematically study the incoming dental unit water and the waste one, focusing the attention on the problem of the wastewater contamination and its regulations. Materials and methods A systematic literature review of the last 17 years was conducted on the topic of dental unit wastewater. Italian and English were the languages chosen for the papers research.Studies were searched in PubMed, Medline and Cochrane, with regard to inclusion criteria. Results The investigation and analysis of the two papers group revealed the presence of many information and scientific studies on the incoming dental unit water contamination, in contrast not much in literature about dental unit waste-water. Conclusions The results revealed that dental unit wastewater is a problem underestimated by the scientific community, with the exception of dental amalgam wastes.In Italy there is a sentence of "Corte di Cassazione Penale, sez III, sentenza 17 gennaio 2013, n 2340" that regularized dental wastewaters as industrial ones, so they are inadequate to be disposed as domestic waters; but, at the same time, there isn't a specific law that regulates this king of waste.
Collapse
Affiliation(s)
- M E Cataldi
- PhD in Materials for Health, Environment and Energy, Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - S Al Rakayan
- PhD in Materials for Health, Environment and Energy, Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - C Arcuri
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - R Condò
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Qiao M, Ren T, Huang TS, Weese J, Liu Y, Ren X, Farag R. N-Halamine modified thermoplastic polyurethane with rechargeable antimicrobial function for food contact surface. RSC Adv 2017. [DOI: 10.1039/c6ra25502g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A TPU elastomer was modified with N-halamine polymers as a novel food contact surface material with rechargeable antimicrobial activity.
Collapse
Affiliation(s)
- Mingyu Qiao
- Department of Poultry Science
- Auburn University
- Auburn
- USA
| | - Tian Ren
- Department of Poultry Science
- Auburn University
- Auburn
- USA
| | | | - Jean Weese
- Department of Poultry Science
- Auburn University
- Auburn
- USA
| | - Ying Liu
- Key Laboratory of Eco-Textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi
- China
| | - Xuehong Ren
- Key Laboratory of Eco-Textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi
- China
| | - Ramsis Farag
- Center for Polymer and Advanced Composites
- Auburn University
- Auburn
- USA
- Textile Engineering Department
| |
Collapse
|
19
|
Bai R, Zhang Q, Li L, Li P, Wang YJ, Simalou O, Zhang Y, Gao G, Dong A. N-Halamine-Containing Electrospun Fibers Kill Bacteria via a Contact/Release Co-Determined Antibacterial Pathway. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31530-31540. [PMID: 27808500 DOI: 10.1021/acsami.6b08431] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
N-Halamine-based antibacterial materials play a significant role in controlling microbial contamination, but their practical applications are limited because of their complicated synthetic process and indistinct antibacterial actions. In this study, novel antibacterial N-halamine-containing polymer fibers were synthesized via an one-step electrospinning of N-halamine-containing polymers without any additives. By adjusting the concentration of precursor and the molecular weight of polymers, the morphology and size of the as-spun N-halamine-containing fibers can be regulated. The as-spun fibers showed antibacterial activity against both Gram-positive and Gram-negative bacteria. After an antibacterial assessment using different biochemical techniques, a combined mechanism of contact/release co-determined killing action was evidenced for the as-spun N-halamine-containing fibers. With the aid of contact action and/or release action, this combined mechanism can allow N-halamines to attack bacteria, making the as-spun fibers wide in the application of antibacterial fields, whatever it is in dry or wet environment. Also, a recycle antibacterial test demonstrated that the as-spun fibers can still offer antibacterial property after five recycle experiments.
Collapse
Affiliation(s)
- Rong Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Qing Zhang
- Department of Chemistry, Tangshan Normal University , Tangshan 063000, People's Republic of China
| | - Lanlan Li
- Affiliated Hospital of Inner Mongolia, University for the Nationalities , Tongliao 028000, People's Republic of China
| | - Ping Li
- College of Chemistry, Jilin University , Changchun 130021, People's Republic of China
| | - Yan-Jie Wang
- Department of Chemical and Biological Engineering, University of British Columbia , 2360 East Mall, Vancouver, BC, Canada , V6T 1Z3
| | - Oudjaniyobi Simalou
- Département de Chimie, Faculté Des Sciences (FDS), Université de Lomé (UL) , BP 1515 Lome, Togo
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
| | - Ge Gao
- College of Chemistry, Jilin University , Changchun 130021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University , Hohhot 010021, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, NanKai University , Tianjin 300071, People's Republic of China
| |
Collapse
|
20
|
Wang LS, Gupta A, Duncan B, Ramanathan R, Yazdani M, Rotello VM. Biocidal and Antifouling Chlorinated Protein Films. ACS Biomater Sci Eng 2016; 2:1862-1866. [DOI: 10.1021/acsbiomaterials.6b00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Sheng Wang
- Department
of Chemistry, University of Massachusetts-Amherst, 710 N. Pleasant St., Amherst, Massachusetts 01003, United States
| | - Akash Gupta
- Department
of Chemistry, University of Massachusetts-Amherst, 710 N. Pleasant St., Amherst, Massachusetts 01003, United States
| | - Bradley Duncan
- Department
of Chemistry, University of Massachusetts-Amherst, 710 N. Pleasant St., Amherst, Massachusetts 01003, United States
| | - Rajesh Ramanathan
- Ian
Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory,
School of Applied Sciences, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Mahdieh Yazdani
- Department
of Chemistry, University of Massachusetts-Amherst, 710 N. Pleasant St., Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts-Amherst, 710 N. Pleasant St., Amherst, Massachusetts 01003, United States
| |
Collapse
|
21
|
Demir B, Cerkez I, Worley SD, Broughton RM, Huang TS. N-Halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1752-7. [PMID: 25587845 DOI: 10.1021/am507329m] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Disinfecting, nonbleaching compound 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC) was uniformly coated onto polypropylene melt-blown nonwoven fabrics having basis-weights of 22 and 50 g/m(2) in order to impart antimicrobial properties via a pad-dry technique. The antimicrobial efficacies of the tested fabrics loaded with MC compound were evaluated against bioaerosols of Staphylococcus aureus and Escherichia coli O157:H7 utilizing a colony counting method. It was determined that both types of coated fabrics exhibited superior antimicrobial efficacy upon exposure to aerosol generation for 3 h. The effect of the coating on air permeability was found to be minimal. Samples were stable for a 6 month time period when they were stored in darkness. However, when the fabrics were exposed to fluorescent light, partial chlorine loss was observed. The MC-coated fabrics exhibited great potential for use in protective face masks and air filters to combat airborne pathogens.
Collapse
Affiliation(s)
- Buket Demir
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| | | | | | | | | |
Collapse
|
22
|
Dong Q, Cai Q, Gao Y, Zhang S, Gao G, Harnoode C, Morigen M, Dong A. Synthesis and bactericidal evaluation of imide N-halamine-loaded PMMA nanoparticles. NEW J CHEM 2015. [DOI: 10.1039/c4nj01806k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antibacterial imide N-halamine-loaded PMMA nanoparticles were fabricated, and their bactericidal activities were systematically evaluated.
Collapse
Affiliation(s)
- Qigeqi Dong
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
- College of Life Science
| | - Qian Cai
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Yangyang Gao
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Shiqi Zhang
- PhD School of Materiaux, Mechanics, Environnement, Energy, Process and Production Engineering (I-MEP2)
- University of Grenoble
- Grenoble 38031
- France
| | - Ge Gao
- College of Chemistry
- Jilin University
- Changchun 130021
- People's Republic of China
| | - Chokto Harnoode
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Morigen Morigen
- College of Life Science
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| |
Collapse
|
23
|
Kadaifciler DG, Cotuk A. Microbial contamination of dental unit waterlines and effect on quality of indoor air. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:3431-3444. [PMID: 24469014 DOI: 10.1007/s10661-014-3628-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m(3)) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m(3)) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study's determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.
Collapse
Affiliation(s)
- Duygu Göksay Kadaifciler
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey,
| | | |
Collapse
|
24
|
Li C, Xue L, Cai Q, Bao S, Zhao T, Xiao L, Gao G, Harnoode C, Dong A. Design, synthesis and biocidal effect of novel amine N-halamine microspheres based on 2,2,6,6-tetramethyl-4-piperidinol as promising antibacterial agents. RSC Adv 2014. [DOI: 10.1039/c4ra08443h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Novel superior antibiotics, i.e. amine N-halamine nanoparticles were synthesized via the radical copolymerization, and their bactericidal effects were studied.
Collapse
Affiliation(s)
- Chenghao Li
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021, People's Republic of China
| | - Linyan Xue
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021, People's Republic of China
| | - Qian Cai
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021, People's Republic of China
| | - Sarina Bao
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021, People's Republic of China
| | - Tianyi Zhao
- College of Chemistry
- Jilin University
- Changchun 130021, People's Republic of China
| | - Linghan Xiao
- College of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012, People's Republic of China
| | - Ge Gao
- College of Chemistry
- Jilin University
- Changchun 130021, People's Republic of China
| | - Chokto Harnoode
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021, People's Republic of China
| |
Collapse
|
25
|
Dong A, Xue M, Lan S, Wang Q, Zhao Y, Wang Y, Zhang Y, Gao G, Liu F, Harnoode C. Bactericidal evaluation of N-halamine-functionalized silica nanoparticles based on barbituric acid. Colloids Surf B Biointerfaces 2014; 113:450-7. [DOI: 10.1016/j.colsurfb.2013.09.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/03/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
|
26
|
Pranantyo D, Xu LQ, Neoh KG, Kang ET, Yang W, Lay-Ming Teo S. Photoinduced anchoring and micropatterning of macroinitiators on polyurethane surfaces for graft polymerization of antifouling brush coatings. J Mater Chem B 2014; 2:398-408. [DOI: 10.1039/c3tb21201g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
|
28
|
Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules 2013; 14:585-601. [PMID: 23391154 DOI: 10.1021/bm301980q] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial N-halamine polymers and coatings have been studied extensively over the past decade thanks to their numerous qualities such as effectiveness toward a broad spectrum of microorganisms, long-term stability, regenerability, safety to humans and environment and low cost. In this review, recent developments are described by emphasizing the synthesis of polymers and/or coatings having N-halamine moieties. Actually, three main approaches of preparation are given in detail: polymerization, generation by electrochemical route with proteins as monomers and grafting with precursor monomers. Identification and characterization of the formation of the N-halamine bonds (>N-X with X = Cl or Br or I) by physical techniques such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and by chemical reactions are described. In order to check the antimicrobial activity of the N-halamine compounds, bacterial tests are also described. Finally, some examples of application of these N-halamines in the water treatment, paints, healthcare equipment, and textile industries are presented and discussed.
Collapse
Affiliation(s)
- Franck Hui
- CNRS, UPR 15 du CNRS, Laboratoire Interfaces et Systèmes Electrochimiques 4, Place Jussieu, 75252 Paris, France
| | | |
Collapse
|
29
|
Abstract
Two new N-halamine polyelectrolytes were synthesized, characterized, and deposited onto cotton fabric from a water solution using a layer-by-layer assembly technique. The fabrics were rendered biocidal by a dilute household bleach solution and challenged with Gram-positive and Gram-negative bacteria. The chlorinated swatches (five bilayer coated) inactivated ~106 Staphylococcus aureus and Escherichia coli O157:H7 within only 2 min of contact time. Although the coatings were susceptible to hydrolysis when exposed to repeated washing, the stability of the system was improved by a posttreatment with a cross-linking agent, 3-glycidoxypropyltrimethoxysilane.
Collapse
Affiliation(s)
- Idris Cerkez
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| |
Collapse
|
30
|
|
31
|
Garg SK, Mittal S, Kaur P. Dental unit waterline management: historical perspectives and current trends. ACTA ACUST UNITED AC 2012; 3:247-52. [DOI: 10.1111/j.2041-1626.2012.00135.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/19/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Shushant K. Garg
- Maharishi Markandeshwar College of Dental Sciences and Research; Mullana-Ambala Haryana India
| | - Sanjeev Mittal
- Maharishi Markandeshwar College of Dental Sciences and Research; Mullana-Ambala Haryana India
| | - Prabhmanik Kaur
- Maharishi Markandeshwar College of Dental Sciences and Research; Mullana-Ambala Haryana India
| |
Collapse
|
32
|
McCann BW, Song H, Kocer HB, Cerkez I, Acevedo O, Worley SD. Inter- and Intramolecular Mechanisms for Chlorine Rearrangements in Trimethyl-Substituted N-Chlorohydantoins. J Phys Chem A 2012; 116:7245-52. [DOI: 10.1021/jp304610k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Billy W. McCann
- Department of Chemistry
and Biochemistry, Auburn University, Auburn,
Alabama 36849, United States
| | - Hao Song
- Department of Chemistry
and Biochemistry, Auburn University, Auburn,
Alabama 36849, United States
| | - Hasan B. Kocer
- Department of Chemistry
and Biochemistry, Auburn University, Auburn,
Alabama 36849, United States
| | - Idris Cerkez
- Department of Chemistry
and Biochemistry, Auburn University, Auburn,
Alabama 36849, United States
| | - Orlando Acevedo
- Department of Chemistry
and Biochemistry, Auburn University, Auburn,
Alabama 36849, United States
| | - S. D. Worley
- Department of Chemistry
and Biochemistry, Auburn University, Auburn,
Alabama 36849, United States
| |
Collapse
|
33
|
Padmanabhuni RV, Luo J, Cao Z, Sun Y. Preparation and Characterization of N-Halamine-based Antimicrobial Fillers. Ind Eng Chem Res 2012; 51:5148-5156. [PMID: 22942559 DOI: 10.1021/ie300212x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to demonstrate that the surface of CaCO(3) fillers could be coated with an N-halamine based fatty acid to make the filler surface organophilic and accomplish antibacterial activity simultaneously, rendering the resulting polymer-filler composites antimicrobial. Thus, a new bi-functional compound, 4, 4 -Dimethyl hydantoin-undecanoic acid (DMH-UA), was synthesized by treating the potassium salt of dimethyl hydantoin (DMH) with 11-bromoundecanoic acid (BUA). Upon chlorination treatment with diluted bleach, DMH-UA was transformed into 3-chloro-4, 4-dimethyl hydantoin- undecanoic acid (Cl-DMH-UA). Alternatively, DMH-UA could be coated onto the surface of CaCO(3) to obtain the corresponding calcium salt, 4, 4-dimethyl hydantoin-undecanoic acid-calcium carbonate (DMH-UA-CaCO(3)). In the presence of diluted chlorine bleach, the coated DMH-UA on the surface of CaCO(3) was transformed into Cl-DMH-UA, leading to the formation of Cl-DMH-UA-CaCO(3). The reactions were characterized with FT-IR, NMR, UV, DSC and SEM analyses. Both Cl-DMH-UA and Cl-DMH-UA-CaCO(3) were used as antimicrobial additives for cellulose acetate (CA). The antimicrobial efficacy of the resulting samples was evaluated against both Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). It was found that with the same additive content, CA samples with Cl-DMH-UA-CaCO(3) and Cl-DMH-UA had very similar antimicrobial and biofilm-controlling activity, but the former released less active chlorine into the surrounding environment than the latter.
Collapse
|
34
|
Fulmer PA, Wynne JH. Coatings capable of germinating and neutralizing Bacillus anthracis endospores. ACS APPLIED MATERIALS & INTERFACES 2012; 4:738-743. [PMID: 22211260 DOI: 10.1021/am201362u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Endospores are formed by various bacterial families, including Bacillus and Clostridium, in response to environmental stresses as a means to survive conditions inhospitable to vegetative growth. Although metabolically inert, the endospore must interact with its environment to determine an optimal time to return to a vegetative state, a process known as germination. Germination has been shown to occur in response to a variety of chemical stimuli from specific nutrient germinants including amino acids, sugars and nucleosides. This process is known to be mediated primarily by the GerA family of spore-specific receptor proteins which initiates a signal transduction cascade that results in a return of oxidative metabolism in response to germinant receptor interactions. Herein, we report the development of a novel coating system capable of germinating B. anthracis endospores, followed by rapid killing of the vegetative bacteria by a novel incorporated amphiphilic biocide. The most effective formulation tested exhibited an ability to germinate and kill B. anthracis endospores and vegetative bacteria, respectively. The formulation reported resulted in a 90% reduction in as little as 5 min, and a 6 log reduction by 45 min.
Collapse
Affiliation(s)
- Preston A Fulmer
- Chemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | | |
Collapse
|
35
|
Growth and identification of bacteria in N-halamine dental unit waterline tubing using an ultrapure water source. Int J Microbiol 2011; 2011:767314. [PMID: 22220171 PMCID: PMC3246724 DOI: 10.1155/2011/767314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022] Open
Abstract
This study examined bacterial growth and type on biofilm-controlling dental unit waterline (DUWL) tubing (T) and control manufacturer's tubing (C) in a laboratory DUWL model using ultrapure source water that was cycled through the lines. Sections of tubing lines were detached and examined for biofilm growth using SEM imaging at six sampling periods. Bacteria from inside surfaces of T and C, source unit, and reservoir were cultured and enumerated. At six months, organisms were molecularly identified from the alignment matches obtained from the top three BLAST searches for the 16S region. There was a 1–3 log increase in organism growth in a clean, nonsterile reservoir within an hour. Biofilm was established on the inside surfaces of C within three weeks, but not on T. Proteobacteria, and Sphingomonas spp. were identified in the source reservoir and C line, and a variation of the genera was found in T line.
Collapse
|