1
|
Sharma V, Kapil D, Singh B. Recent advances in biomarkers detection of various diseases by biosensors derived from optical chromogenic polymeric transducers: A review. Process Biochem 2025; 148:191-221. [DOI: 10.1016/j.procbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Patel S, Shrivas K, Sinha D, Monisha, Kumar Patle T, Yadav S, Thakur SS, Deb MK, Pervez S. Smartphone-integrated printed-paper sensor designed for on-site determination of dimethoate pesticide in food samples. Food Chem 2022; 383:132449. [DOI: 10.1016/j.foodchem.2022.132449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
|
3
|
Yang Y, Li L, Lin L, Wang X, Li J, Liu H, Liu X, Huo D, Hou C. A dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for determination of Cu 2+ and glyphosate. Anal Bioanal Chem 2022; 414:2619-2628. [PMID: 35084508 DOI: 10.1007/s00216-022-03898-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Herein, a dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for Cu2+ and glyphosate determination was constructed. Fluorescence silicon nanoparticles (SiNPs) were prepared by hydrothermal reaction, which has maximum fluorescence intensity under the excitation of 355 nm. o-Phenylenediamine (OPD) was oxidized through Cu2+ to generate 2,3-diaminophenazine (oxOPD). The obtained oxOPD showed a strong absorption peak at 417 nm and quenched the fluorescence of SiNPs at 446 nm due to fluorescence resonance energy transfer (FRET). Meanwhile, oxOPD produced a new fluorescence emission at 556 nm forming a ratiometric state. With increasing Cu2+, the original solution changed from colorless to yellow. When glyphosate was present, the interaction between Cu2+ and the functional groups of glyphosate could reduce the oxidation of oxOPD, resulting in the enhancement of fluorescence at 446 nm and the decrease of fluorescence at 556 nm. Furthermore, the addition of glyphosate changed yellow solution to colorless. Under the optimal conditions of OPD (1 mM), 20 mM Tris-HCl buffer (pH 7.5), and incubation time (4 h), the ratiometric fluorescence sensor had good selectivity and showed a wide linear range of 0.025-20 μM with the LOD of 0.008 μM for Cu2+ and 0.15-1.5 μg/mL with the LOD of 0.003 μg/mL for glyphosate, respectively. Besides, it is worth mentioning that this developed sensing system showed good performance in real samples, providing a simple and reliable dual-signal detection strategy.
Collapse
Affiliation(s)
- Yixia Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Li Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Liyun Lin
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China
| | - Xianfeng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Huan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.,Chongqing Institute for Food and Drug Control, Chongqing, 401121, People's Republic of China
| | - Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
4
|
Yamaguchi M, Ishii A, Oikawa I, Yamazaki Y, Imura M, Takamura H. Heat-Resistant Black Insulative Thin Films for Flat-Panel Displays in Al-Doped Ag-Fe-O Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57971-57980. [PMID: 34839655 DOI: 10.1021/acsami.1c17599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multilayer antireflection (AR) coatings require a material with a large and constant absorption coefficient over the whole visible range and thermal stability. Coatings for use in touch panel displays are also required to be electrically insulative. In this study, 60 mol % Ag-40 mol % (Fe1-xAlx)-O (x = 0, 0.25, 0.50, 0.75, and 1.0) thin films are prepared by pulsed laser deposition, and their optical properties, electric resistance, and thermal stability are clarified by combining the experimental data and density functional theory (DFT) calculations. Over the visible range, large and constant absorption coefficients are obtained for all compositions. The standard deviations of the absorption coefficients of the x = 0.75 and 1.0 samples are found to be smaller than those of conventional materials like graphite and CrOx. High sheet resistance (Rsheet > 107 Ω·sq-1) is also confirmed. It is determined that nanometer-sized Ag dispersed into a matrix, which was confirmed to be ionic Ag in the matrix phase, is responsible for the absorption at a shorter visible light range and insulative nature even at high Ag content. The films with high Al content are stable up to 500 °C. The potential of these black insulative Ag-Al-Fe-O thin films for use as black AR coatings is confirmed by optical simulations with multilayer stacks.
Collapse
Affiliation(s)
- Mina Yamaguchi
- Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Akihiro Ishii
- Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Itaru Oikawa
- Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yusuke Yamazaki
- Thin Film Division, Nippon Electric Glass Co., Ltd., Nagahama 529-0292, Japan
| | - Masaaki Imura
- Thin Film Division, Nippon Electric Glass Co., Ltd., Nagahama 529-0292, Japan
| | - Hitoshi Takamura
- Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Kang G, Jing Y, Liu W, Zhang C, Lu L, Chen C, Lu Y. Inhibited oxidase mimetic activity of palladium nanoplates by poisoning the active sites for thiocyanate detection. Analyst 2021; 146:1650-1655. [PMID: 33522553 DOI: 10.1039/d1an00002k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel convenient colorimetric method for sensitive detection of thiocyanate (SCN-) has been developed based on its suppression of the oxidase-like activity of palladium square nanoplates on reduced graphene oxide (Pd SP@rGO). SCN- can be adsorbed onto the surface of Pd SP@rGO via binding with Pd atoms and blocks the active sites that mimic oxidase, thus inhibiting the corresponding chromogenic reaction of 3,3',5,5'-tetramethylbenzidine, which has been comprehensively revealed by the UV-vis spectra and X-ray photoelectron spectra. The color fading exhibits SCN- concentration-dependent behavior and can be easily recorded by either UV-vis spectroscopy or naked-eye observation. Therefore, both quantitative detection via measurement of the decrease in absorbance and visual detection of SCN- can be achieved. Owing to the intrinsic amplification of signals by the oxidase-like activity of Pd SP@rGO without resorting to unstable and destructive H2O2, this assay is straightforward, robust and sensitive enough for the detection of SCN- in real samples. Furthermore, an "INH" logic gate is rationally constructed based on the proposed colorimetric SCN- sensor.
Collapse
Affiliation(s)
- Ge Kang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yijia Jing
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
6
|
Specific and visual assay of iodide ion in human urine via redox pretreatment using ratiometric fluorescent test paper printed with dimer DNA silver nanoclusters and carbon dots. Anal Chim Acta 2020; 1138:99-107. [DOI: 10.1016/j.aca.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/22/2023]
|
7
|
Shrivas K, Patel S, Thakur SS, Shankar R. Food safety monitoring of the pesticide phenthoate using a smartphone-assisted paper-based sensor with bimetallic Cu@Ag core-shell nanoparticles. LAB ON A CHIP 2020; 20:3996-4006. [PMID: 32966488 DOI: 10.1039/d0lc00515k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Presently, the use of several pesticides has been continuously rising owing to the increase in the production of food materials to meet the requirements of the growing population of the world. The safety of food materials with regards to pesticides is an important health concern for people. With this aim, we have developed a smartphone-assisted paper-based sensor impregnated with citrate capped Cu@Ag core-shell nanoparticles (NPs) for selective determination of phenthoate pesticides in water and food samples. The mechanism for selective detection is based on the high affinity of phenthoate to interact with silver NPs present on the surface of CuNPs, which results in aggregation and a change in the color of the paper device. Furthermore, the proposed mechanism and interaction of phenthoate with Cu@Ag NPs was theoretically investigated by density functional theory (DFT) using Gaussian 16.0 software. The linear range for the determination of phenthoate was found in the range of 50-1500 μg L-1, with a limit of detection of 15 μg L-1, and a 92.6 to 97.4% recovery, and the interference studies demonstrated the selectivity for the determination of the target analyte from complex sample matrices. Finally, paper impregnated with Cu@Ag was exploited for the monitoring of the phenthoate pesticide in different water and food samples. The advantages of this paper-based sensor, coupled with a smartphone readout system, are that is it is user-friendly, easy-to-use, cost-effective, and can be applied at the sample source compared to sophisticated analytical instruments.
Collapse
Affiliation(s)
- Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG 492010, India.
| | - Sanyukta Patel
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur, CG-492010, India
| | - Santosh Singh Thakur
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, CG 495009, India
| | - Ravi Shankar
- Nanoscience and Nanoengineering Program, South Dakota School of Mines and Technology, Rapid City, South Dakota-57701, USA
| |
Collapse
|
8
|
A facile synthesis of Cu–CuO–Ag nanocomposite and their hydrogenation reduction of p-nitrophenol. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Nanomaterials for the detection of halides and halogen oxyanions by colorimetric and luminescent techniques: A critical overview. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ma Y, Shen XF, Liu F, Pang YH. Colorimetric detection toward halide ions by a silver nanocluster hydrogel. Talanta 2020; 211:120717. [PMID: 32070619 DOI: 10.1016/j.talanta.2020.120717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
We reported a novel colorimetric method for highly selective halide ions (Cl-, Br-and I-) recognition by Ag nanoclusters hydrogel (Ag-NCs hydrogel). The Ag-NCs hydrogel could discriminate Cl-, Br-and I- ions from a wide range of environmentally important anions, identified by the distinct UV-vis absorption band changes or the change in the color of Ag-NCs hydrogel. On the basis of this strategy, 20 μM and 200 μM of Cl-, 5 μM and 100 μM of Br-, 5 μM and 100 μM of I- could be recognized within 5 min by UV-vis spectrum and naked eye observation, respectively. The surface color of hydrogel changed from yellow to dark green for Cl-, to brown for Br-, and to deep brown for I-. In addition, this sensing method had been applied successfully to detect chloride anion in real water samples such as tap water, pond water and pure water. Therefore, this rapid, facile, and cost-effective colorimetric assay based on Ag-NCs hydrogel was attractive and promising.
Collapse
Affiliation(s)
- Yun Ma
- State Key Laboratory for Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory for Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fei Liu
- State Key Laboratory for Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue-Hong Pang
- State Key Laboratory for Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Rout L, Kumar A, Chand PK, Achary LSK, Dash P. Microwave‐Assisted Efficient One‐Pot Multi‐Component Synthesis of Octahydroquinazolinone Derivatives Catalyzed by Cu@Ag Core‐Shell Nanoparticle. ChemistrySelect 2019. [DOI: 10.1002/slct.201900619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lipeeka Rout
- Department of ChemistryNational Institute of Technology, Rourkela, Odisha India, 769008
- Department of Polymer Science and EngineeringPusan National University, Busan 46241 Republic of Korea
| | - Aniket Kumar
- Department of ChemistryNational Institute of Technology, Rourkela, Odisha India, 769008
- School of Materials Science and EngineeringChonnam National University, Gwang-Ju Republic of Korea
| | - Pradyumna K Chand
- Department of ChemistryNational Institute of Technology, Rourkela, Odisha India, 769008
| | - L Satish K Achary
- Department of ChemistryNational Institute of Technology, Rourkela, Odisha India, 769008
| | - Priyabrat Dash
- Department of ChemistryNational Institute of Technology, Rourkela, Odisha India, 769008
| |
Collapse
|
12
|
Du L, Xu HZ, Li T, Zhang Y, Zou FY. Fabrication of ascorbyl palmitate loaded poly(caprolactone)/silver nanoparticle embedded poly(vinyl alcohol) hybrid nanofibre mats as active wound dressings via dual-spinneret electrospinning. RSC Adv 2017. [DOI: 10.1039/c7ra03193a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AP loaded PCL/AgNP embedded PVA hybrid nanofibre mats were prepared through dual-spinneret electrospinning, which altogether contributed to wound healing.
Collapse
Affiliation(s)
- L. Du
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Provincial Research Center of Clothing Engineering Technology
| | - H. Z. Xu
- Department of Bio-based Materials Science
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - T. Li
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Y. Zhang
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Provincial Research Center of Clothing Engineering Technology
| | - F. Y. Zou
- School of Fashion Design & Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Provincial Research Center of Clothing Engineering Technology
| |
Collapse
|
13
|
Ding L, Ma C, Li L, Zhang L, Yu J. A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Jin X, Mao A, Ding M, Ding P, Zhang T, Gu X, Xiao W, Yuan J. A Simple Route to Synthesize Cu@Ag Core-Shell Bimetallic Nanoparticles and Their Surface-Enhanced Raman Scattering Properties. APPLIED SPECTROSCOPY 2016; 70:1692-1699. [PMID: 30208721 DOI: 10.1177/0003702816645607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Water-dispersed Cu@Ag core-shell nanoparticles (NPs) with 15 nm-diameter Cu core and 5 nm-thick Ag shell can be synthesized by a facile one-step chemical reduction at room temperature without any protective atmosphere. To obtain a homogeneous Ag coating on Cu, the influence of [Cu/Ag] molar ratio was investigated. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed that Ag formed a dense coating on the surface of Cu, and that phase-pure spherical Cu@Ag core-shell bimetallic NPs were prepared when the [Cu/Ag] molar ratio was between 1/0.5 and 1/0.75. The time dependence of ultraviolet-visible (UV-Vis) spectra and XRD patterns of six-month stored Cu@Ag NPs showed that the as-prepared Cu@Ag NPs have a long-term antioxidant activity. Also, the surface-enhanced Raman scattering (SERS) signals had a high stability and reproducibility for the substrates. Hence, the as-prepared Cu@Ag nanostructures can be used as an efficient substrate for SERS signals.
Collapse
Affiliation(s)
- Xia Jin
- 1 Zhejiang Province Key Laboratory of Soldering & Brazing Materials and Technology, Hangzhou, China
| | - Aiqin Mao
- 2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, China
- 3 Anhui Ruital New Material Technology Co., Ltd., Xuancheng, China
| | - Mengling Ding
- 2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, China
| | - Peipei Ding
- 2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, China
| | - Tianchi Zhang
- 2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, China
| | - Xiaolong Gu
- 1 Zhejiang Province Key Laboratory of Soldering & Brazing Materials and Technology, Hangzhou, China
| | - Wei Xiao
- 2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, China
| | - Jin Yuan
- 2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, China
| |
Collapse
|
15
|
Sun J, Wang B, Zhao X, Li ZJ, Yang X. Fluorescent and Colorimetric Dual-Readout Assay for Inorganic Pyrophosphatase with Cu2+-Triggered Oxidation of o-Phenylenediamine. Anal Chem 2016; 88:1355-61. [DOI: 10.1021/acs.analchem.5b03848] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Sun
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Bin Wang
- School
of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xue Zhao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Jun Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
16
|
Jiang Z, Tian Y, Ding S, Wen J, Wang C. Facile synthesis of Cu–Ag hybrid nanowires with strong surface-enhanced Raman scattering sensitivity. CrystEngComm 2016. [DOI: 10.1039/c5ce02221e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The growth mechanism and regularity of Ag–Cu hybrid nanowires synthesized by a simple solution method have been analyzed.
Collapse
Affiliation(s)
- Zhi Jiang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin, China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin, China
| | - Su Ding
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin, China
| | - Jiayue Wen
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin, China
| | - Chenxi Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin, China
| |
Collapse
|
17
|
Zuo J, Gao N, Yu Z, Kang L, O’Halloran KP, Pang H, Zhang Z, Ma H. An amperometric sensor of iodate based on the composite film of a crown heteropolyanions and Cu@Ag nanoparticles. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
A selective sensor for cyanide ion (CN − ) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0764-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Zhao D, Chen C, Lu L, Yang F, Yang X. A dual-mode colorimetric and fluorometric “light on” sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles. Analyst 2015; 140:8157-64. [DOI: 10.1039/c5an01926e] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, highly sensitive and selective dual-readout (colorimetric and fluorometric) sensor based on fluorescent carbon dots (CDs) and unmodified gold nanoparticles (AuNPs) for the detection of thiocyanate (SCN−) was proposed.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chuanxia Chen
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Lixia Lu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Fan Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
20
|
Ding W, Huang S, Guan L, Liu X, Luo Z. Furthering the chemosensing of silver nanoclusters for ion detection. RSC Adv 2015. [DOI: 10.1039/c5ra11124b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An eco-friendly silver nanocluster chemosensor for Mn2+and I−ion detection, differentiation and bioimaging was synthesized. The chemosensing mechanisms were elucidated by microscopic characterization and spectral analyses.
Collapse
Affiliation(s)
- Weihua Ding
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Saipeng Huang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Lingmei Guan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xianhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
21
|
Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip. Biosens Bioelectron 2014; 62:13-8. [DOI: 10.1016/j.bios.2014.06.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 01/02/2023]
|
22
|
Shen YW, Hsu PH, Unnikrishnan B, Li YJ, Huang CC. Membrane-based assay for iodide ions based on anti-leaching of gold nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2576-2582. [PMID: 24405058 DOI: 10.1021/am405027q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a label-free colorimetric strategy for the highly selective and sensitive detection of iodide (I(-)) ions in human urine sample, seawater and edible salt. A poly(N-vinyl-2-pyrrolidone)-stabilized Au nanoparticle (34.2-nm) was prepared to detect I(-) ions using silver (Ag(+)) and cyanide (CN(-)) ions as leaching agents in a glycine-NaOH (pH 9.0) solution. For the visual detection of the I(-) ions by naked eye, and for long time stability of the probe, Au nanoparticles (NPs) decorated mixed cellulose ester membrane (MCEM) was prepared (Au NPs/MCEM). The Au NPs-based probe (CN(-)/Ag(+)-Au NPs/MCEM) operates on the principle that Ag(+) ions form a monolyar silver atoms/ions by aurophilic/argentophilic interactions on the Au NPs and it accelerates the leaching rate of Au atoms in presence of CN(-) ions. However, when I(-) is introduced into this system, it inhibits the leaching of Au atoms because of the strong interactions between Ag/Au ions and I(-) ions. Inductively coupled plasma mass spectrometry, surface-assisted laser desorption/ionization time-of-flight mass spectrometry were used to characterize the surface properties of the Au NPs in the presence of Ag(+) and I(-). Under optimal solution conditions, the CN(-)/Ag(+)-Au NPs/MCEM probe enabled the detection of I(-) by the naked eye at nanomolar concentrations with high selectivity (at least 1000-fold over other anions). In addition, this cost-effective probe allowed the determination of I(-) ions in complex samples, such as urine, seawater, and edible salt samples.
Collapse
Affiliation(s)
- Yu-Wei Shen
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University , 2 Beining Road, Keelung, 20224, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Qu F, Li NB, Luo HQ. Polyethyleneimine-Templated Ag Nanoclusters: A New Fluorescent and Colorimetric Platform for Sensitive and Selective Sensing Halide Ions and High Disturbance-Tolerant Recognitions of Iodide and Bromide in Coexistence with Chloride under Condition of High Ionic Strength. Anal Chem 2012; 84:10373-9. [DOI: 10.1021/ac3024526] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fei Qu
- Key Laboratory on Luminescence and
Real−Time
Analysis, Ministry of Education, School of Chemistry and Chemical
Engineering, Southwest University, Chongqing
400715, P. R. China
| | - Nian Bing Li
- Key Laboratory on Luminescence and
Real−Time
Analysis, Ministry of Education, School of Chemistry and Chemical
Engineering, Southwest University, Chongqing
400715, P. R. China
| | - Hong Qun Luo
- Key Laboratory on Luminescence and
Real−Time
Analysis, Ministry of Education, School of Chemistry and Chemical
Engineering, Southwest University, Chongqing
400715, P. R. China
| |
Collapse
|
24
|
Wei SC, Hsu PH, Lee YF, Lin YW, Huang CC. Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2652-8. [PMID: 22524233 DOI: 10.1021/am3003044] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We developed two simple, rapid, and cost-effective fluorescent nanosensors, both featuring bovine serum albumin labeled with fluorescein isothiocyanate (FITC))-capped gold nanoparticles (FITC-BSA-Au NPs), for the selective sensing of cyanide (CN(-)) and iodine (I(-)) ions in high-salinity solutions and edible salt samples. During the preparation of FITC-BSA-Au NP probes, when AuNPs were introduced to the mixture containing FITC and BSA, the unconjugated FITC and FITC-labeled BSA (FITC-BSA) adsorbed to the particles' surfaces. These probes operated on a basic principle that I(-) and CN(-) deposited on the surfaces of the Au NPs or the etching of Au NPs induced the release of FITC molecules or FITC-BSA into the solution, and thus restored the florescence of FITC. We employed FITC-BSA to protect the Au NPs from significant aggregation in high-salinity solutions. In the presence of masking agents such as S(2)O(8)(2-)/Pb(2+), FITC-BSA-Au NPs facilitated the selective detection of CN(-) (by at least 150-fold in comparison with other anions). We also demonstrated that the FITC-BSA-Au NPs in the presence of H(2)O(2) could selectively detect I(-) down to 50 nM. Taking advantages of their high stability and selectivity, we employed our FITC-BSA-Au NP-based probes for the detection of CN(-) and I(-) in water samples (pond water, tap water, and seawater) and detection of I(-) in edible salt samples, respectively. This simple, rapid, and cost-effective sensing system appears to demonstrate immense practical potential for the detection of anions in real samples.
Collapse
Affiliation(s)
- Shih-Chun Wei
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, 2 Beining Road, Keelung 20224, Taiwan
| | | | | | | | | |
Collapse
|