1
|
Uzawa H, Nagatsuka T, Seto Y, Nishida Y, Saito M, Tamiya E. Novel Glycolipid Chips with a Double Layer of Au Nanoparticles for Biological Toxin Detection. ACS OMEGA 2023; 8:13754-13762. [PMID: 37091419 PMCID: PMC10116526 DOI: 10.1021/acsomega.2c07976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Glycolipid chips having a double layer of Au nanoparticles are proposed for detection of biological toxins. The sugar-modified chips constitute an under and an upper layer of Au nanoparticles of 20-80 nm diameter on glass plates, and Au nanoparticles of each layer are linked with 1,8-octanedithiol by a self-assembled monolayer (SAM) technique. A tris-sialo glycosphingolipid, ganglioside GT1b, having lipoic amide at the sphingosine part was immobilized on the Au outside surface of the upper layer, and botulinum toxin (type A heavy chain) was detected by localized surface plasmon resonance (LSPR). The GT1b-Cer-coated chip having a double layer of Au nanoparticles enhanced the toxin detection by LSPR more than those with single monolayers. The LSPR response changed according to the sizes of Au nanoparticles in each under and upper layer. The combination of 60 and 40 nm Au nanoparticles in the under and upper layer, respectively, gave the best result, which enabled the toxin detection at concentrations below 5 ng/mL with the portable LSPR device.
Collapse
Affiliation(s)
- Hirotaka Uzawa
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology, Tsukuba Center, Tsukuba Central, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takehiro Nagatsuka
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology, Tsukuba Center, Tsukuba Central, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuo Seto
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Yoshihiro Nishida
- Division
of Applied Biological Chemistry, Graduate School of Environmental
Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Masato Saito
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Rasetti-Escargueil C, Avril A. Medical Countermeasures against Ricin Intoxication. Toxins (Basel) 2023; 15:toxins15020100. [PMID: 36828415 PMCID: PMC9966136 DOI: 10.3390/toxins15020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ricin toxin is a disulfide-linked glycoprotein (AB toxin) comprising one enzymatic A chain (RTA) and one cell-binding B chain (RTB) contained in the castor bean, a Ricinus species. Ricin inhibits peptide chain elongation via disruption of the binding between elongation factors and ribosomes, resulting in apoptosis, inflammation, oxidative stress, and DNA damage, in addition to the classically known rRNA damage. Ricin has been used in traditional medicine throughout the world since prehistoric times. Because ricin toxin is highly toxic and can be readily extracted from beans, it could be used as a bioweapon (CDC B-list). Due to its extreme lethality and potential use as a biological weapon, ricin toxin remains a global public health concern requiring specific countermeasures. Currently, no specific treatment for ricin intoxication is available. This review focuses on the drugs under development. In particular, some examples are reviewed to demonstrate the proof of concept of antibody-based therapy. Chemical inhibitors, small proteins, and vaccines can serve as alternatives to antibodies or may be used in combination with antibodies.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Avenue du Docteur Roux, 75015 Paris, France
- Correspondence:
| | - Arnaud Avril
- Unité Immunopathologies, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
3
|
Hosu I, Sobaszek M, Ficek M, Bogdanowicz R, Coffinier Y. Boron-doped carbon nanowalls for fast and direct detection of cytochrome C and ricin by matrix-free laser desorption/ionization mass spectrometry. Talanta 2023; 252:123778. [DOI: 10.1016/j.talanta.2022.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
|
4
|
Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Uzawa H, Kondo S, Nagatsuka T, Miyaguchi H, Seto Y, Oshita A, Dohi H, Nishida Y, Saito M, Tamiya E. Assembly of Glycochips with Mammalian GSLs Mimetics toward the On-site Detection of Biological Toxins. ACS OMEGA 2021; 6:32597-32606. [PMID: 34901608 PMCID: PMC8655786 DOI: 10.1021/acsomega.1c04154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 05/09/2023]
Abstract
According to our previously proposed scheme, each of three kinds of glycosphingolipid (GSL) derivatives, that is, lactosyl ceramide [Lac-Cer (1)] and gangliosides [GM1-Cer (2) and GT1b-Cer (3)], was installed onto the glass surface modified with Au nanoparticles. In the present study, we tried to apply microwave irradiation to promote their installing reactions. Otherwise, this procedure takes a lot of time as long as a conventional self-assembled monolayer (SAM) technique is applied. Using an advanced microwave reactor capable of adjusting ambient temperatures within a desired range, various GSL glycochips were prepared from the derivatives (1)-(3) under different microwave irradiation conditions. The overall assembling process was programed with an IC controller to finish in 1 h, and the derived GSL glycochips were evaluated in the analysis of three kinds of biological toxins [a Ricinus agglutinin (RCA120), botulinum toxin (BTX), and cholera toxin (CTX)] using a localized surface plasmon resonance (LSPR) biosensor. In the LSPR analysis, most of the irradiated GSL chips showed an enhanced response to the targeting toxin when they were irradiated under optimal temperature conditions. Lac-Cer chips showed the highest response to RCA120 (an agglutinin with β-D-Gal specificity) when the microwave irradiation was conducted at 30-35 °C. Compared to our former Lac-Cer glycochips with the conventional SAM condition, their response was enhanced by 3.6 times. Analogously, GT1b chips gained an approximately 4.1 times enhancement in their response to botulinum type C toxin (BTX/C) when the irradiation was conducted around at 45-60 °C. In the LSPR evaluation of the GM1-Cer glycochips using CTX, an optimal condition also appeared at around 30-35 °C. On the other hand, the microwave irradiation did not lead to a notable increase compared to the former GM1-Cer chips derived with the SAM technique. Judging from these experimental results, the microwave irradiation effectively promotes the installing process for all the three kinds of the GSL derivatives, while the optimal thermal condition becomes different from each other. Many bacterial and botanic proteinous toxins are composed of such carbohydrate binding domains or subunits that can discriminate both the key epitope structure and the dimension of glycoconjugates on the host cell surface. It is assumed that the optimal irradiation and thermal conditions are required to array these semi-synthetic GSL derivatives on the Au nanoparticles in a proper density and geometry for tight adhesion with each of the biological toxins.
Collapse
Affiliation(s)
- Hirotaka Uzawa
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Satoshi Kondo
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takehiro Nagatsuka
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hajime Miyaguchi
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Yasuo Seto
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Aguri Oshita
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Hirofumi Dohi
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Yoshihiro Nishida
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Masato Saito
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Bint E Naser SF, Su H, Liu HY, Manzer ZA, Chao Z, Roy A, Pappa AM, Salleo A, Owens RM, Daniel S. Detection of Ganglioside-Specific Toxin Binding with Biomembrane-Based Bioelectronic Sensors. ACS APPLIED BIO MATERIALS 2021; 4:7942-7950. [DOI: 10.1021/acsabm.1c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samavi Farnush Bint E Naser
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hui Su
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zachary A. Manzer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Arpita Roy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Yilmaz T, Goluch ED. A comprehensive review of conventional techniques and biosensor systems developed for in situ detection of vibrio cholerae. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Kandasamy K, Selvaprakash K, Chen YC. Functional magnetic nanoparticle-based affinity probe for MALDI mass spectrometric detection of ricin B. Mikrochim Acta 2021; 188:339. [PMID: 34510288 DOI: 10.1007/s00604-021-04991-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
The use of lactosylated Fe3O4 magnetic nanoparticles (MNP@LAC) has been explored as affinity probes against ricin B based on galactose-ricin B binding interactions. Lactose was bound onto the surface of aminated MNPs through the Maillard reaction. The enrichment of ricin B took ~1 h by incubating MNP@LAC with samples under shaking at room temperature, followed by magnetic isolation. The resultant MNP@LAC-ricin B conjugates were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The limit of detection toward ricin B was ~3 nM by using the developed method. It was possible to detect the peptides derived from the tryptic digest of trace ricin B (~0.39 nM) enriched by the MNP@LAC probes followed by tryptic digestion and MALDI-MS analysis. The feasibility of using the developed method for detection of ricin B from complex white corn starch samples spiked with trace ricin B was demonstrated.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Karuppuchamy Selvaprakash
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
9
|
A Simple, Fast and Portable Method for Electrochemical Detection of Adenine Released by Ricin Enzymatic Activity. Toxins (Basel) 2021; 13:toxins13040238. [PMID: 33810228 PMCID: PMC8066795 DOI: 10.3390/toxins13040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
International authorities classify ricin toxin present in castor seed as a potential agent for use in bioterrorism. Therefore, the detection, identification, and characterization of ricin in various sample matrices are considered necessary actions for risk assessment during a suspected exposure. This study reports a portable electrochemical assay for detecting active ricin based on the adenine electro-oxidation released from herring sperm DNA substrate by its catalytic action. Also, kinetic parameters were calculated, and the values were Km of 3.14 µM and Kcat 2107 min−1. A linear response was found in optimized experimental conditions for ricin concentrations ranging from 8 to 120 ng/mL, and with a detection limit of 5.14 ng/mL. This proposed detection strategy emphasizes the possibility of field detection of active ricin in food matrices and can be applied to other endonucleolytic activities.
Collapse
|
10
|
Noor N, Gani A, Gani A, Shah A, Ashraf ZU. Exploitation of polyphenols and proteins using nanoencapsulation for anti-viral and brain boosting properties - Evoking a synergistic strategy to combat COVID-19 pandemic. Int J Biol Macromol 2021; 180:375-384. [PMID: 33716131 PMCID: PMC7946821 DOI: 10.1016/j.ijbiomac.2021.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
The world is currently under the threat of COVID pandemic and has focused every dimension of research in finding a cure to this novel disease. In this current situation, people are facing mental stress, agony, fear, depression and other associated symptoms which are taking a toll on their overall mental health. Nanoencapsulation of certain brain boosting polyphenols including quercetin, caffeine, cocoa flavanols and proteins like lectins can become new area of interest in the present scenario. Besides the brain boosting benefits, we have also highlighted the anti- viral activities of these compounds which we assume can play a possible role in combating COVID-19 given to their previous history of action against certain viruses. This review outlines the nanoencapsulation approaches of such synergistic compounds as a novel strategy to take the ongoing research a step ahead and also provides a new insight in bringing the role of nanotechnology in addressing the issues related to COVID pandemic.
Collapse
Affiliation(s)
- Nairah Noor
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Asir Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Asima Shah
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Zanoor Ul Ashraf
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
11
|
Immunodiagnostic of Vibrio cholerae O1 using localized surface plasmon resonance (LSPR) biosensor. Int Microbiol 2020; 24:115-122. [DOI: 10.1007/s10123-020-00148-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
|
12
|
Khateb H, Klös G, Meyer RL, Sutherland DS. Development of a Label-Free LSPR-Apta Sensor for Staphylococcus aureus Detection. ACS APPLIED BIO MATERIALS 2020; 3:3066-3077. [DOI: 10.1021/acsabm.0c00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Heba Khateb
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gunnar Klös
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Duncan S. Sutherland
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Jeong D, Lee WY. Highly sensitive impedimetric glycosensor for the determination of a ricin surrogate, Ricinus communis agglutinin I (RCA120). J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kandasamy K, Selvaprakash K, Chen YC. Using lactosylated cysteine functionalized gold nanoparticles as colorimetric sensing probes for rapid detection of the ricin B chain. Mikrochim Acta 2019; 186:847. [PMID: 31776791 DOI: 10.1007/s00604-019-3900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
A new colorimetric method that can be used to rapidly detect toxic ricin is demonstrated. Lactosylated cysteine-functionalized gold nanoparticles (Au@LACY NPs) were prepared by a one-pot reaction and employed as optical probes for determination of ricin B chain. It is found that the Au@LACY NPs undergo aggregation in the presence of ricin B chain. This leads to surface plasmon coupling effects of the particles and a color change from red to blue, with absorption maxima at 519 and 670 nm, respectively. The feasibility of using the current approach for quantitative analysis of ricin B chain is also demonstrated. The calibration plot is generated by plotting the ratio of the absorbance at the wavelength of 634 to 518 nm versus the concentration of the ricin B chain. The spectrophotometric method has a ~29 pM (~ 0.91 ng·mL-1) detection limit, and the sample with the concentration of ~ 400 pM (~ 13 ng·mL-1) can be detected visually. Graphical abstractSchematic representation of using lactosylated cysteine capped gold nanoparticles (Au@LACY NPs) as colorimetric probes for the ricin B chain through surface plasmon coupling effects. Sample solution turns from red to blue in the presence of ricin B chain.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
15
|
Silicon nitride sugar chips for detection of Ricinus communis proteins and Escherichia coli O157 Shiga toxins. Anal Biochem 2019; 580:42-48. [PMID: 31173726 DOI: 10.1016/j.ab.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022]
Abstract
Lactosides having either an amino-triethylene glycol or an azido-triethylene glycol were designed and synthesized, and the two derivatives were immobilized onto silicon nitride (SiN) surfaces. When a click reaction was applied for the immobilization of the azido-sugar, a Ricinus communis lectin (RCA120) was detected with a higher response by reflectometric interference spectroscopy (RIfS). When an N-hydroxysuccinimide (NHS) method was applied for the sugar immobilization, the response was less than that of the click one. The response of bovine serum albumin (BSA) as the negative control was negligible, but the lactose-SiN chip prepared by the click method suppressed nonspecific binding more effectively than did the chip from the NHS method. Next, we examined an antibody-immobilized SiN chip prepared by the click reaction. The detection response was, however, lower than that of the lactose-SiN chip, meaning that the sugar-chip by the click reaction was superior to the antibody-chip. Finally, to detect Shiga toxins from Escherichia coli O157:H7, globotrisaccharide (Gb3) with an azido-triethylene glycol was synthesized and immobilized onto the SiN chip by the click reaction. The Gb3-SiN chips enabled us to detect the toxins at concentrations less than 100 ng/mL. RCA120, horse gram, gorse lectins and BSA showed no response to the Gb3-SiN chip, showing a high specificity for the toxin.
Collapse
|
16
|
Koneti S, Borges J, Roiban L, Rodrigues MS, Martin N, Epicier T, Vaz F, Steyer P. Electron Tomography of Plasmonic Au Nanoparticles Dispersed in a TiO 2 Dielectric Matrix. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42882-42890. [PMID: 30457319 DOI: 10.1021/acsami.8b16436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic Au nanoparticles (AuNPs) embedded into a TiO2 dielectric matrix were analyzed by combining two-dimensional and three-dimensional electron microscopy techniques. The preparation method was reactive magnetron sputtering, followed by thermal annealing treatments at 400 and 600 °C. The goal was to assess the nanostructural characteristics and correlate them with the optical properties of the AuNPs, particularly the localized surface plasmon resonance (LSPR) behavior. High-angle annular dark field-scanning transmission electron microscopy results showed the presence of small-sized AuNPs (quantum size regime) in the as-deposited Au-TiO2 film, resulting in a negligible LSPR response. The in-vacuum thermal annealing at 400 °C induced the formation of intermediate-sized nanoparticles (NPs), in the range of 10-40 nm, which led to the appearance of a well-defined LSPR band, positioned at 636 nm. Electron tomography revealed that most of the NPs are small-sized and are embedded into the TiO2 matrix, whereas the larger NPs are located at the surface. Annealing at 600 °C promotes a bimodal size distribution with intermediate-sized NPs embedded in the matrix and big-sized NPs, up to 100 nm, appearing at the surface. The latter are responsible for a broadening and a redshift, to 645 nm, in the LSPR band because of increase of scattering-to-absorption ratio. Beyond differentiating and quantifying the surface and embedded NPs, electron tomography also provided the identification of "hot-spots". The presence of NPs at the surface, individual or in dimers, permits adsorption sites for LSPR sensing and for surface-enhanced spectroscopies, such as surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Siddardha Koneti
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Joel Borges
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Lucian Roiban
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Marco S Rodrigues
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Nicolas Martin
- Institut FEMTO-ST, UMR 6174 CNRS, Université Bourgogne Franche-Comté , 15B, Avenue des Montboucons , 25030 Besançon Cedex , France
| | - Thierry Epicier
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Filipe Vaz
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Philippe Steyer
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| |
Collapse
|
17
|
Ferhan AR, Jackman JA, Sut TN, Cho NJ. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays. SENSORS 2018; 18:s18041283. [PMID: 29690554 PMCID: PMC5948918 DOI: 10.3390/s18041283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Tun Naw Sut
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore.
| |
Collapse
|
18
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
19
|
Functionalized gold nanoparticles as affinity nanoprobes for multiple lectins. Colloids Surf B Biointerfaces 2018; 162:60-68. [DOI: 10.1016/j.colsurfb.2017.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
|
20
|
Cai Z, Sasmal A, Liu X, Asher SA. Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection. ACS Sens 2017; 2:1474-1481. [PMID: 28934853 DOI: 10.1021/acssensors.7b00426] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochemically important lectin, jacalin, play significant roles in many biological functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here we report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection of lectin proteins. The copolymerization of a vinyl linked carbohydrate monomer with acrylamide and acrylic acid forms a carbohydrate hydrogel that shows specific "multivalent" binding to lectin proteins. The resulting carbohydrate hydrogels are attached to 2-D photonic crystals (PCs) that brightly diffract visible light. This diffraction provides an optical readout that sensitively monitors the hydrogel volume. We utilize lactose, galactose, and mannose containing hydrogels to fabricate a series of 2-D PC sensors that show strong selective binding to the lectin proteins ricin, jacalin, and concanavalin A (Con A). This binding causes a carbohydrate hydrogel shrinkage which significantly shifts the diffraction wavelength. The resulting 2-D PC sensors can selectively detect the lectin proteins ricin, jacalin, and Con A. These unoptimized 2-D PC hydrogel sensors show a limit of detection (LoD) of 7.5 × 10-8 M for ricin, a LoD of 2.3 × 10-7 M for jacalin, and a LoD of 3.8 × 10-8 M for Con A, respectively. This sensor fabrication approach may enable numerous sensors for the selective detection of numerous lectin proteins.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Aniruddha Sasmal
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xinyu Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sanford A. Asher
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Determination of ricin intoxication in biological samples by monitoring depurinated 28S rRNA in a unique reverse transcription-ligase-polymerase chain reaction assay. Forensic Toxicol 2017. [DOI: 10.1007/s11419-017-0377-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Valdez J, Bawage S, Gomez I, Singh SR. Facile and rapid detection of respiratory syncytial virus using metallic nanoparticles. J Nanobiotechnology 2016; 14:13. [PMID: 26921130 PMCID: PMC4769566 DOI: 10.1186/s12951-016-0167-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) causes severe respiratory infection in infants, children and elderly. Currently, there is no effective vaccine or RSV specific drug for the treatment. However, an antiviral drug ribavirin and palivizumab is prescribed along with symptomatic treatment. RSV detection is important to ensure appropriate treatment of children. Most commonly used detection methods for RSV are DFA, ELISA and Real-time PCR which are expensive and time consuming. Newer approach of plasmonic detection techniques like localized surface plasmon resonance (LSPR) spectroscopy using metallic nanomaterials has gained interest recently. The LSPR spectroscopy is simple and easy than the current biophysical detection techniques like surface-enhanced Raman scattering (SERS) and mass-spectroscopy. Results In this study, we utilized LSPR shifting as an RSV detection method by using an anti-RSV polyclonal antibody conjugated to metallic nanoparticles (Cu, Ag and Au). Nanoparticles were synthesized using alginate as a reducing and stabilizing agent. RSV dose and time dependent LSPR shifting was measured for all three metallic nanoparticles (non-functionalized and functionalized). Specificity of the functionalized nanoparticles for RSV was evaluated in the presence Pseudomonas aeruginosa and adenovirus. We found that functionalized copper nanoparticles were efficient in RSV detection. Functionalized copper and silver nanoparticles were specific for RSV, when tested in the presence of adenovirus and P. aeruginosa, respectively. Limit of detection and limit of quantification values reveal that functionalized copper nanoparticles are superior in comparison with silver and gold nanoparticles. Conclusions The study demonstrates successful application of LSPR for RSV detection, and it provides an easy and inexpensive alternative method for the potential development of LSPR-based detection devices. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0167-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesus Valdez
- Laboratorio de Materiales I, Facultad de Ciencias Químicas, Centro de Laboratorios Especializados, Universidad Autónoma de Nuevo León, Av. Pedro de Alba, 66451, Monterrey, Nuevo León, Mexico.
| | - Swapnil Bawage
- Center for NanoBiotechnology Research, Alabama State University, 1627, Harris way, Montgomery, AL, 36104, USA.
| | - Idalia Gomez
- Laboratorio de Materiales I, Facultad de Ciencias Químicas, Centro de Laboratorios Especializados, Universidad Autónoma de Nuevo León, Av. Pedro de Alba, 66451, Monterrey, Nuevo León, Mexico.
| | - Shree Ram Singh
- Center for NanoBiotechnology Research, Alabama State University, 1627, Harris way, Montgomery, AL, 36104, USA.
| |
Collapse
|
23
|
Biosensor-Based Technologies for the Detection of Pathogens and Toxins. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
24
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Affiliation(s)
- Wen Zhou
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xia Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
26
|
Kuo FY, Chang BY, Wu CY, Mong KKT, Chen YC. Magnetic Nanoparticle-Based Platform for Characterization of Shiga-like Toxin 1 from Complex Samples. Anal Chem 2015; 87:10513-20. [PMID: 26447488 DOI: 10.1021/acs.analchem.5b02712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Foodborne illness outbreaks resulting from contamination of Escherichia coli O157:H7 remain a serious concern in food safety. E. coli O157:H7 can cause bloody diarrhea, hemolytic uremic syndrome, or even death. The pathogenicity of E. coli O157:H7 is mainly caused by the expression of Shiga-like toxins (SLTs), i.e., SLT-1 and SLT-2. SLTs are pentamers composed of a single A and five B subunits. In this study, we propose a magnetic nanoparticle (MNP)-based platform to rapidly identify SLT-1 from the complex cell lysate of E. coli O157:H7. The core of the MNPs is made of iron oxide, whereas the surface of the core is coated with a thin layer of alumina (Fe3O4@Al2O3 MNPs). The Fe3O4@Al2O3 MNPs are functionalized with pigeon ovalbumin (POA), which contains Gal-α(1→4)-Gal-β(1→4)-GlcNAc termini that can bind SLT-1B selectively. Furthermore, POA is a phosphate protein. Thus, it can be easily immobilized on the surface of the Fe3O4@Al2O3 MNPs through aluminum phosphate chelation under microwave heating within 1.5 min. The generated POA-Fe3O4@Al2O3 MNPs are capable of effectively enriching SLT-1B from complex cell lysates simply by pipetting 20 μL of the sample in and out of the tip in a vial for ∼1 min. To release SLT-1 from the MNPs, Gal-α(1→4)-Gal disaccharides were used for displacement. The released target species are sufficient to be identified by matrix-assisted laser desorption/ionization mass spectrometry. Although the sample volume used in this approach is small (20 μL) and the enrichment time is short (1 min), the selectivity of this approach toward SLT-1B is quite good. We have demonstrated the effectiveness of this approach for rapid determination of the presence of SLT-1 from complex cell lysates and ham/juice samples based on the detection of SLT-1B.
Collapse
Affiliation(s)
- Fang-Yin Kuo
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Bo-Yao Chang
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Ching-Yi Wu
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Kwok-Kong Tony Mong
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| |
Collapse
|
27
|
Huang FT, Han YB, Feng Y, Yang GY. A facile method for controlling the reaction equilibrium of sphingolipid ceramide N-deacylase for lyso-glycosphingolipid production. J Lipid Res 2015; 56:1836-42. [PMID: 26130766 DOI: 10.1194/jlr.d061176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
Lyso-glycosphingolipids (lyso-GSLs), the N-deacylated forms of glycosphingolipids (GSLs), are important synthetic intermediates for the preparation of GSL analogs. Although lyso-GSLs can be produced by hydrolyzing natural GSLs using sphingolipid ceramide N-deacylase (SCDase), the yield for this reaction is usually low because SCDase also catalyzes the reverse reaction, ultimately establishing an equilibrium between hydrolysis and synthesis. In the present study, we developed an efficient method for controlling the reaction equilibrium by introducing divalent metal cation and detergent in the enzymatic reaction system. In the presence of both Ca(2+) and taurodeoxycholate hydrate, the generated fatty acids were precipitated by the formation of insoluble stearate salts and pushing the reaction equilibrium toward hydrolysis. The yield of GM1 hydrolysis can be achieved as high as 96%, with an improvement up to 45% compared with the nonoptimized condition. In preparative scale, 75 mg of lyso-GM1 was obtained from 100 mg of GM1 with a 90% yield, which is the highest reported yield to date. The method can also be used for the efficient hydrolysis of a variety of GSLs and sphingomyelin. Thus, this method should serve as a facile, easily scalable, and general tool for lyso-GSL production to facilitate further GSL research.
Collapse
Affiliation(s)
- Feng-Tao Huang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun-Bin Han
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Hushegyi A, Bertok T, Damborsky P, Katrlik J, Tkac J. An ultrasensitive impedimetric glycan biosensor with controlled glycan density for detection of lectins and influenza hemagglutinins. Chem Commun (Camb) 2015; 51:7474-7. [PMID: 25828081 PMCID: PMC4883646 DOI: 10.1039/c5cc00922g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An impedimetric glycan biosensor with optimised glycan density was applied for the detection of lectins and influenza hemagglutinins down to attomolar concentrations (aM).
Collapse
Affiliation(s)
- A Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
29
|
Bozza WP, Tolleson WH, Rivera Rosado LA, Zhang B. Ricin detection: Tracking active toxin. Biotechnol Adv 2015; 33:117-123. [DOI: 10.1016/j.biotechadv.2014.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022]
|
30
|
Abstract
Glycans are chains of carbohydrates attached to proteins (glycoproteins and proteoglycans) or lipids (glycolipids). Glycosylation is a posttranslational modification and glycans have a wide range of functions in a human body including involvement in oncological diseases. Change in a glycan structure cannot only indicate presence of a pathological process, but more importantly in some cases also its stage. Thus, a glycan analysis has a potential to be an effective and reliable tool in cancer diagnostics. Lectins are proteins responsible for natural biorecognition of glycans, even carbohydrate moieties still attached to proteins or whole cells can be recognized by lectins, what makes them an ideal candidate for designing label-free biosensors for glycan analysis. In this review we would like to summarize evidence that glycoprofiling of biomarkers by lectin-based biosensors can be really helpful in detecting prostate cancer.
Collapse
Affiliation(s)
- Štefan Belický
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK - 845 38, Slovakia
| | - Jan Tkac
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK - 845 38, Slovakia
| |
Collapse
|
31
|
Hushegyi A, Tkac J. Are glycan biosensors an alternative to glycan microarrays? ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:6610-6620. [PMID: 27231487 PMCID: PMC4878710 DOI: 10.1039/c4ay00692e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Complex carbohydrates (glycans) play an important role in nature and study of their interaction with proteins or intact cells can be useful for understanding many physiological and pathological processes. Such interactions have been successfully interrogated in a highly parallel way using glycan microarrays, but this technique has some limitations. Thus, in recent years glycan biosensors in numerous progressive configurations have been developed offering distinct advantages compared to glycan microarrays. Thus, in this review advances achieved in the field of label-free glycan biosensors are discussed.
Collapse
Affiliation(s)
- A Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - J Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| |
Collapse
|
32
|
Seto H, Kamba S, Kondo T, Hasegawa M, Nashima S, Ehara Y, Ogawa Y, Hoshino Y, Miura Y. Metal mesh device sensor immobilized with a trimethoxysilane-containing glycopolymer for label-free detection of proteins and bacteria. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13234-13241. [PMID: 25014128 DOI: 10.1021/am503003v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biosensors for the detection of proteins and bacteria have been developed using glycopolymer-immobilized metal mesh devices. The trimethoxysilane-containing glycopolymer was immobilized onto a metal mesh device using the silane coupling reaction. The surface shape and transmittance properties of the original metal mesh device were maintained following the immobilization of the glycopolymer. The mannose-binding protein (concanavalin A) could be detected at concentrations in the range of 10(-9) to 10(-6) mol L(-1) using the glycopolymer-immobilized metal mesh device sensor, whereas another protein (bovine serum albumin) was not detected. A detection limit of 1 ng mm(-2) was achieved for the amount of adsorbed concanavalin A. The glycopolymer-immobilized metal mesh device sensor could also detect bacteria as well as protein. The mannose-binding strain of Escherichia coli was specifically detected by the glycopolymer-immobilized metal mesh device sensor. The glycopolymer-immobilized metal mesh device could therefore be used as a label-free biosensor showing high levels of selectivity and sensitivity toward proteins and bacteria.
Collapse
Affiliation(s)
- Hirokazu Seto
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Z, Yu L, Xu L, Hu X, Li P, Zhang Q, Ding X, Feng X. Biotoxin sensing in food and environment via microchip. Electrophoresis 2014; 35:1547-59. [PMID: 24723235 DOI: 10.1002/elps.201300570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/21/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
| | - Li Yu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
| | - Lin Xu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Quality Inspection and Test Center for Oilseeds Products; Ministry of Agriculture; Wuhan China
| | - Xiaofeng Hu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Detection for Mycotoxins; Ministry of Agriculture; Wuhan China
| | - Peiwu Li
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
- Quality Inspection and Test Center for Oilseeds Products; Ministry of Agriculture; Wuhan China
- Key Laboratory of Detection for Mycotoxins; Ministry of Agriculture; Wuhan China
| | - Qi Zhang
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
| | - Xiaoxia Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory; Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|