1
|
Heo J, Seo S, Yun H, Ku KH. Stimuli-responsive nanoparticle self-assembly at complex fluid interfaces: a new insight into dynamic surface chemistry. NANOSCALE 2024; 16:3951-3968. [PMID: 38319675 DOI: 10.1039/d3nr05990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The self-assembly of core/shell nanoparticles (NPs) at fluid interfaces is a rapidly evolving area with tremendous potential in various fields, including biomedicine, display devices, catalysts, and sensors. This review provides an in-depth exploration of the current state-of-the-art in the programmed design of stimuli-responsive NP assemblies, with a specific focus on inorganic core/organic shell NPs below 100 nm for their responsive adsorption properties at fluid and polymer interfaces. The interface properties, such as ligands, charge, and surface chemistry, play a significant role in dictating the forces and energies governing both NP-NP and NP-hosting matrix interactions. We highlight the fundamental principles governing the reversible surface chemistry of NPs and present detailed experimental examples in the following three key aspects of stimuli-responsive NP assembly: (i) stimuli-driven assembly of NPs at the air/liquid interface, (ii) reversible NP assembly at the liquid/liquid interface, including films and Pickering emulsions, and (iii) hybrid NP assemblies at the polymer/polymer and polymer/water interfaces that exhibit stimuli-responsive behaviors. Finally, we address current challenges in existing approaches and offer a new perspective on the advances in this field.
Collapse
Affiliation(s)
- Jieun Heo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Seunghwan Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hongseok Yun
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Li J, Wang M. Fabrication and Evaluation of Multiwalled Carbon Nanotube-Containing Bijels and Bijels-Derived Porous Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1434-1443. [PMID: 36634198 DOI: 10.1021/acs.langmuir.2c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structures having continuous porous networks are of great interest for applications in areas such as separation, energy storage, and tissue engineering. Bicontinuous interfacially jammed emulsion gels ("bijels") have been actively investigated as templates for fabricating useful structures for such applications. However, the fabrication of bijels-templated porous nanocomposites incorporated with reinforcing or functional nanoparticles (or nanofibers) to provide specific, targeted functions is still a challenge, stemming from the difficulties of fabricating functional nanoparticle-containing bijels. In this study, bijels-derived porous nanocomposites incorporated with multiwalled carbon nanotubes (MWCNTs), which possessed interconnected channels inside the structures, were made via a facile phase inversion technique for bijels fabrication. For the composite manufacture, in the first step of bijels fabrication, MWCNT adsorption into the oil phase of bijels was observed. It was revealed that MWCNTs were physically absorbed into the oil-rich phase without disrupting the bicontinuous structure of bijels. The successful fabrication of non-crosslinked and crosslinked porous structures containing MWCNTs was evidenced through imaging by confocal laser scanning microscopy and scanning electron microscopy, respectively. For potential controlled release applications, an anticancer drug, doxorubicin hydrochloride (DOX), was incorporated into bijels-derived structures and nanocomposites. The in vitro DOX release profiles from drug delivery systems based on bijels-derived MWCNT-containing nanocomposites suggested that the photothermal effect of MWCNTs initiated by near-infrared irradiation could modulate the drug release behavior. Overall, this study has developed a facile approach to fabricate bijels-templated bicontinuous porous structures incorporated with functional nanoparticles (or nanofibers) and opened an avenue for making MWCNT-containing porous nanocomposites for controlled drug release applications.
Collapse
Affiliation(s)
- Junzhi Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Hybrid Time-Dependent Ginzburg–Landau Simulations of Block Copolymer Nanocomposites: Nanoparticle Anisotropy. Polymers (Basel) 2022; 14:polym14091910. [PMID: 35567080 PMCID: PMC9103753 DOI: 10.3390/polym14091910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Block copolymer melts are perfect candidates to template the position of colloidal nanoparticles in the nanoscale, on top of their well-known suitability for lithography applications. This is due to their ability to self-assemble into periodic ordered structures, in which nanoparticles can segregate depending on the polymer–particle interactions, size and shape. The resulting coassembled structure can be highly ordered as a combination of both the polymeric and colloidal properties. The time-dependent Ginzburg–Landau model for the block copolymer was combined with Brownian dynamics for nanoparticles, resulting in an efficient mesoscopic model to study the complex behaviour of block copolymer nanocomposites. This review covers recent developments of the time-dependent Ginzburg–Landau/Brownian dynamics scheme. This includes efforts to parallelise the numerical scheme and applications of the model. The validity of the model is studied by comparing simulation and experimental results for isotropic nanoparticles. Extensions to simulate nonspherical and inhomogeneous nanoparticles are discussed and simulation results are discussed. The time-dependent Ginzburg–Landau/Brownian dynamics scheme is shown to be a flexible method which can account for the relatively large system sizes required to study block copolymer nanocomposite systems, while being easily extensible to simulate nonspherical nanoparticles.
Collapse
|
4
|
Gao N, Hou G, Liu J, Shen J, Gao Y, Lyulin AV, Zhang L. Tailoring the mechanical properties of polymer nanocomposites via interfacial engineering. Phys Chem Chem Phys 2019; 21:18714-18726. [PMID: 31424061 DOI: 10.1039/c9cp02948f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The improvement of mechanical properties of polymer nanocomposites (PNCs) has been studied for many years, with the main focus on the structure of the nanofillers. Much less effort has been devoted to unraveling the factors controlling the structure of the grafted chains. Herein, through coarse-grained molecular-dynamics simulations, we have successfully fabricated an ideal, mechanically-interlocked composite structure composed of end-functionalized chains grafted to the nanoparticle surface forming rings and making the matrix chains thread through these rings. Depending on the details of the grafting, the reinforcement effect can be remarkable, improving the tensile stress of the system significantly up to 700%. Meanwhile, anisotropy of the system's mechanical response is also observed. Furthermore, the influence of the grafted chain distribution on the mechanical properties of the system has been investigated as well. We observe that the mechanical properties of the system are closely related to the total number of the beads in the grafted chains or the synergistic effect between the length and density of the grafted chains leads to no significant difference in the performance of systems. At constant grafting density, the mechanical properties of the systems correlate negatively to the grafted chain length. In general, our study should help to design and fabricate high-performance PNCs with excellent mechanical properties.
Collapse
Affiliation(s)
- Naishen Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Yan N, Liu X, Zhu J, Zhu Y, Jiang W. Well-Ordered Inorganic Nanoparticle Arrays Directed by Block Copolymer Nanosheets. ACS NANO 2019; 13:6638-6646. [PMID: 31125524 DOI: 10.1021/acsnano.9b00940] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Precise control over the spatial arrangement of inorganic nanoparticles on a large scale is desirable for the design of functional nanomaterials, sensing, and optical/electronic devices. Although great progress has been recently made in controlling the organization of nanoparticles, there still remains a grand challenge to arrange nanoparticles into highly-ordered arrays over multiple length scales. Here, we report the directed arrangement of inorganic nanoparticles into arrayed structures with long-range order, up to tens of microns, by using hexagonally-packed cylindrical patterns of block copolymer nanosheets self-assembled within collapsed emulsion droplets as scaffolds. This technique can be used to generate nanoparticle arrays with various nanoparticle arrangements, including hexagonal honeycomb structures, periodic nanoring structures, and their combinations. This finding provides an effective route to fabricate diverse nanoparticle arrayed structures for the design of functional materials and devices.
Collapse
Affiliation(s)
- Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xuejie Liu
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan , Hubei 430074 , China
| | - Yutian Zhu
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou , Zhejiang 311121 , China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
6
|
Wang HS, Kim KH, Bang J. Thermal Approaches to Perpendicular Block Copolymer Microdomains in Thin Films: A Review and Appraisal. Macromol Rapid Commun 2018; 40:e1800728. [PMID: 30500096 DOI: 10.1002/marc.201800728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/17/2018] [Indexed: 01/20/2023]
Abstract
Block copolymer thin films are highly versatile and accessible materials capable of producing nanofeatures in the size regime of a few to hundreds of nanometers by a simple spin-coating-and-anneal process. Unfortunately, this simple protocol usually leads to parallel microdomains, which limits the applicability of such nanofeatures. A great deal of effort has been put into achieving perpendicular microdomains, but those that incorporate thermal annealing are arguably the most practical and reproducible in the lab and industry. This review discusses the recent ongoing efforts on various thermal approaches to achieving perpendicular microdomains in order to provide the readers with a toolbox to work with.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Mah AH, Afzali P, Qi L, Pesek S, Verduzco R, Stein GE. Bottlebrush Copolymer Additives for Immiscible Polymer Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Luqing Qi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77006, United States
| | - Stacy Pesek
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77006, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77006, United States
| | - Gila E. Stein
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Park SJ, Kim S, Yong D, Choe Y, Bang J, Kim JU. Interactions between brush-grafted nanoparticles within chemically identical homopolymers: the effect of brush polydispersity. SOFT MATTER 2018; 14:1026-1042. [PMID: 29328340 DOI: 10.1039/c7sm02483e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We systematically examined the polymer-mediated interparticle interactions between polymer-grafted nanoparticles (NPs) within chemically identical homopolymer matrices through experimental and computational efforts. In experiments, we prepared thermally stable gold NPs grafted with polystyrene (PS) or poly(methyl methacrylate) (PMMA), and they were mixed with corresponding homopolymers. The nanocomposites are well dispersed when the molecular weight ratio of free to grafted polymers, α, is small. For α above 10, NPs are partially aggregated or clumped within the polymer matrix. Such aggregation of NPs at large α has been understood as an autophobic dewetting behavior of free homopolymers on brushes. In order to theoretically investigate this phenomenon, we calculated two particle interaction using self-consistent field theory (SCFT) with our newly developed numerical scheme, adopting two-dimensional finite volume method (FVM) and multi-coordinate-system (MCS) scheme which makes use of the reflection symmetry between the two NPs. By calculating the polymer density profile and interparticle potential, we identified the effects of several parameters such as brush thickness, particle radius, α, brush chain polydispersity, and chain end mobility. It was found that increasing α is the most efficient method for promoting autophobic dewetting phenomenon, and the attraction keeps increasing up to α = 20. At small α values, high polydispersity in brush may completely nullify the autophobic dewetting, while at intermediate α values, its effect is still significant in that the interparticle attractions are heavily reduced. Our calculation also revealed that the grafting type is not a significant factor affecting the NP aggregation behavior. The simulation result qualitatively agrees with the dispersion/aggregation transition of NPs found in our experiments.
Collapse
Affiliation(s)
- So Jung Park
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Seyong Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Daeseong Yong
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Youngson Choe
- Department of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jaeup U Kim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
9
|
Wang HS, Khan A, Choe Y, Huh J, Bang J. Architectural Effects of Organic Nanoparticles on Block Copolymer Orientation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hyun Suk Wang
- Department
of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Anzar Khan
- Department
of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Youngson Choe
- Department
of Chemical Engineering, Pusan National University, Kumjeong-ku, Busan 609-735, Republic of Korea
| | - June Huh
- Department
of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Joona Bang
- Department
of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
10
|
Gai Y, Lin Y, Song DP, Yavitt BM, Watkins JJ. Strong Ligand–Block Copolymer Interactions for Incorporation of Relatively Large Nanoparticles in Ordered Composites. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yue Gai
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors
Drive, Amherst, Massachusetts 01003, United States
| | - Ying Lin
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors
Drive, Amherst, Massachusetts 01003, United States
| | - Dong-Po Song
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors
Drive, Amherst, Massachusetts 01003, United States
| | - Benjamin M. Yavitt
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors
Drive, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors
Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Kim S, Wang HS, Choe Y, Choi SH, Bang J. Controlling the microdomain orientation in block copolymer thin films via cross-linkable random copolymer neutral layer. Polym J 2016. [DOI: 10.1038/pj.2016.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Kim S, Wang HS, Jang SG, Choi SH, Kim BJ, Bang J. Nanoparticles as structure-directing agents for controlling the orientation of block copolymer microdomain in thin films. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Seyong Kim
- Department of Chemical and Biological Engineering; Korea University; Seoul 136-701 Republic of Korea
| | - Hyun Suk Wang
- Department of Chemical and Biological Engineering; Korea University; Seoul 136-701 Republic of Korea
| | - Se Gyu Jang
- Soft Innovative Materials Research Center, Institute of Advanced Composite Materials Korea Institute of Science and Technology (KIST); Jeonbuk 565-905 Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering; Hongik University; Seoul 121-791 Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
13
|
Kim S, Kim TH, Huh J, Bang J, Choi SH. Nanoscale Phase Behavior of Mixed Polymer Ligands on a Gold Nanoparticle Surface. ACS Macro Lett 2015; 4:417-421. [PMID: 35596306 DOI: 10.1021/acsmacrolett.5b00101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phase behavior of mixed polymer ligands anchored on Au nanoparticle surfaces was investigated using small-angle neutron scattering (SANS). An equimolar mixture of deuterated polystyrene (dPS) and normal poly(methyl methacrylate) (PMMA) was attached to Au nanoparticles, and the polymer-grafted nanoparticles were characterized in an isotopic toluene mixture, a good solvent for both homopolymers. Poly(deuterated styrene-ran-methyl methacrylate) (P(dS-r-MMA)) attached to the Au nanoparticles was also characterized as a control case. The results suggest that as the molecular weight increases, the two species of polymers become phase-separated on the nanoparticle surface, resulting in the formation of Janus-type nanoparticles. Monte Carlo simulations for the model polymer-grafted particle system suggest that the effective attraction between the polymers and the particle leads to dense wetting layers of solvophilic polymer blends in the vicinity of the solvophobic particle surface, which plays a decisive role in the formation of the phase-separated morphology.
Collapse
Affiliation(s)
- Seyong Kim
- Department
of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Tae-Hwan Kim
- Neutron
Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353, Republic of Korea
| | - June Huh
- Department
of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Joona Bang
- Department
of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Soo-Hyung Choi
- Department
of Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| |
Collapse
|
14
|
Kim S, Yoo M, Baettig J, Kang EH, Koo J, Choe Y, Choi TL, Khan A, Son JG, Bang J. Perpendicularly Oriented Block Copolymer Thin Films Induced by Neutral Star Copolymer Nanoparticles. ACS Macro Lett 2015; 4:133-137. [PMID: 35596386 DOI: 10.1021/mz500761h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
By introducing neutral star copolymers consisting of poly(styrene-r-methyl methacrylate) (PS-r-PMMA) arms, a perpendicular orientation of PS-b-PMMA microdomains in thin films could be achieved without any surface treatment. The star copolymers were synthesized by arm-first method in which short chain arms are cross-linked by employing a multifunctional coupling reagent via atom transfer radical polymerization. To find the optimal neutral composition for the perpendicular orientation, we varied the composition of MMA in PS-r-PMMA arms from 40 mol % to 80 mol %. It was found that the star copolymer having an overall PS and PMMA composition of 59:41 exhibits the well-ordered perpendicular orientation of lamellar structures after thermal annealing. Furthermore, we also prepared the deuterated star copolymers to trace them within PS-b-PMMA films along vertical direction by neutron reflectivity. In this case, it was observed that star copolymers were mainly located at the top surface and bottom interface of the films, thereby effectively neutralizing the surface/interfacial energy differences.
Collapse
Affiliation(s)
- Seyong Kim
- Department
of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Misang Yoo
- Department
of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Julia Baettig
- Department
of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| | - Eun-Hye Kang
- Department
of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jaseung Koo
- Neutron
Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353, Republic of Korea
| | - Youngson Choe
- Department
of Chemical Engineering, Pusan National University, Kumjeong-ku, Busan 609-735, Republic of Korea
| | - Tae-Lim Choi
- Department
of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea
| | - Anzar Khan
- Department
of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| | - Jeong Gon Son
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Joona Bang
- Department
of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
15
|
Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|