1
|
Dang X, Fu Y, Wang X. A temperature and pressure dual-responsive, stretchable, healable, adhesive, and biocompatible carboxymethyl cellulose-based conductive hydrogels for flexible wearable strain sensor. Biosens Bioelectron 2024; 246:115893. [PMID: 38048722 DOI: 10.1016/j.bios.2023.115893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
The study aimed to develop a novel temperature and pressure dual-responsive conductive hydrogel with self-healing, self-adhesive, biocompatible, and stretchable properties, for the development of multifunctional anti-counterfeiting and wearable flexible electronic materials. A conductive hydrogel based on carboxymethyl cellulose (CMC) was synthesized by simple "one pot" free radical polymerization of CMC, acrylamide (AAm) and acrylic acid (AAc). The hydrogel displayed temperature responsiveness and possessed an upper critical solution temperature (UCST) value. In addition, hydrogels also had surprising pressure responsiveness. The synthesized hydrogels were characterized by FTIR, TGA, DSC, and XRD analysis. Importantly, the obtained hydrogels exhibited exceptional mechanical properties (stress: 730 kPa, strain: 880%), fatigue resistance, stretchability, self-healing capability, self-adhesive properties, and conductivity. In addition, valuable insights were obtained into the synthesis and application of flexible anti-counterfeiting and camouflage materials by the temperature and pressure dual-responsive hydrogels. Moreover, the prepared hydrogel, with an electrically sensitive perception of external strain (GF = 2.61, response time: 80 ms), can be utilized for monitoring human movement, emotional changes, physiological signals, language, and more, rendering it suitable for novel flexible anti-counterfeiting materials and versatile wearable iontronics. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional anti-counterfeiting materials and flexible electronic skin sensors.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Yuntao Fu
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
2
|
Fan H, Du S, Zhang L, Liu M. Adenine selected hydrogelation of vitamin B2 with amplified circularly polarized luminescence. Chem Commun (Camb) 2023; 59:1999-2002. [PMID: 36723065 DOI: 10.1039/d2cc05691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the individual VB2 cannot form gels in water, it could form a two-component hydrogel with adenine (A) through the intermolecular π-π stacking and hydrogen bonding between VB2 and A, while other nucleobases, including thymine (T), guanine (G), cytosine (C) and uracil (U), could not. The chiral information of VB2 was amplified in the co-assembly of VB2 and A, which was revealed by the enhanced circular dichroism (CD) and circularly polarized luminescence (CPL). Moreover, due to the different interaction modes between VB2 and A in 1 : 1 and 1 : 2 molar ratio, a reversion of the CPL signal was observed. This work demonstrated how biological molecules could be fabricated into functional materials using the specific interactions within the biological molecules.
Collapse
Affiliation(s)
- Huahua Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sifan Du
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China. .,Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Li Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.
| | - Minghua Liu
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang Y, Xu J, Wang R, Liu H, Yu S, Xing LB. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121402. [PMID: 35636137 DOI: 10.1016/j.saa.2022.121402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
In the present work, artificial light-harvesting systems with a fluorescence resonance energy transfer (FRET) process were successfully obtained in the aqueous solution. We designed and synthesized an amphiphilic pyrene derivative with two 4-vinylpyridium arms (Pmvb), which can interact with cucurbit[8]uril (CB[8]) to form supramolecular polymer through host-guest interactions in aqueous solution. The formation of supramolecular polymers results in a significant enhancement of fluorescence, which makes Pmvb-CB[8] an ideal energy donor to construct artificial light-harvesting systems in the aqueous solution. Subsequently, two different fluorescence dyes Rhodamine B (RhB) and Sulforhodamine 101 (SR101) were introduced as energy acceptors into the solution of Pmvb-CB[8] respectively, to fabricate two different artificial light-harvesting systems. The obtained artificial light-harvesting systems can achieve an efficient energy transfer process from Pmvb-CB[8] to RhB or SR101 with high energy transfer efficiency.
Collapse
Affiliation(s)
- Ying Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Juan Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
4
|
Zhang G, Yu L, Chen J, Dong R, Godbert N, Li H, Hao J. Artificial Light-Harvesting System with White-Light Emission in a Bicontinuous Ionic Medium. J Phys Chem Lett 2022; 13:8999-9006. [PMID: 36149259 DOI: 10.1021/acs.jpclett.2c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial light-harvesting systems (ALHSs), which are closely related to Förster resonance energy transfer (FRET), are among the most attractive scientific topics during the past few decades. Specifically, binary ALHSs that are composed of a fluid donor and acceptor have a simplified composition and high number density of the donor units. However, largely due to the difficulty in obtaining a fluid donor, investigation of these systems is still quite limited, especially for the ionic systems. Herein, we report a new type of binary ALHS using an ionic naphthalimide (NPI) derivative as a donor, which shows greatly improved photoluminescence for its bicontinuous liquid structure. When blending with an acceptor such as rhodamine 6G or trans-4-[4-(dimethylamino)styryl]-methylpyridinium iodide, efficient FRET was confirmed by both experimental results and molecular dynamics simulations, with an energy transfer efficiency up to ∼90%. Tunable color, including white-light emission, was achieved by tuning the acceptor/donor ratio, opening the door for a variety of applications such as light-emitting diodes and photoluminescent inks.
Collapse
Affiliation(s)
- Geping Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Longyue Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jingfei Chen
- Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Nicolas Godbert
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici), Centro di Eccelenza CEMIF.CAL, LASCAMM CR-INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
5
|
Sun Y, Le X, Zhou S, Chen T. Recent Progress in Smart Polymeric Gel-Based Information Storage for Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201262. [PMID: 35686315 DOI: 10.1002/adma.202201262] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Information security protection has a tremendous impact on human life, social stability and national security, leading to the rapid development of anti-counterfeiting materials and related techniques. However, the traditional stored information on hard or dry media is often static and lacks functions, which makes it challenging to deal with increasing and powerful counterfeiting technologies. Modified intelligent polymeric gels exhibit color changes and shape morphing under external stimuli, which give them great potential for applications in information storage. This paper provides an overview of the latest progress in polymeric gel-based information storage materials in relation to counterfeiting. Following a brief introduction of anti-counterfeiting materials, the preparation methods for intelligent gels with adjustable colors (e.g., chemical colors and physical colors) and various encryption/decryption modes involving dimensions and diverse colors are outlined. Finally, the challenges and prospects for information storage and anti-counterfeiting based on smart gels are discussed.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Zhou
- St. Elizabeth Catholic High School, 238 Westmount Blvd, Thornhill, ON, L4J 7V9, Canada
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Wang XD, Song Y, Pei WY, Ma JF. Single-Component White Light Emission from a Metal-Coordinated Cyclotriveratrylene-Based Coordination Polymer. Inorg Chem 2022; 61:10768-10773. [PMID: 35786953 DOI: 10.1021/acs.inorgchem.2c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A coordination polymer, namely, [Cd3L(H2O)3]·DMA·4H2O (1) (DMA = N,N-dimethylacetamide), was prepared by the solvothermal reaction of cyclotriveratrylene-based ligand 5,6,12,13,19,20-hexacarboxy-methoxy-cyclotriveratrylene (H6L) and Cd(NO3)2·4H2O. In 1, a two-dimensional structure was constructed by the connection of hexanuclear Cd-O clusters and L6- anions. Photoluminescence measurements indicated that 1 displayed tunable photoluminescence through the variation of the excitation wavelength. Significantly, the white light emission of 1 can be observed with a broad excitation wavelength range from 320 to 385 nm. When 1 is excited by 385 nm light, its chromatic coordinate is (0.29, 0.34), which is located very close to the pure white light region (0.33, 0.33). Meanwhile, the color temperature (CCT) is 7994 K, which corresponds well to "cold" white light.
Collapse
Affiliation(s)
- Xiao-Dan Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuting Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
7
|
Barot YB, Anand V, Mishra R. Phenothiazine and triphenylamine-based fluorescent Schiff bases for the dual application of white light generation and H 2O 2 sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj02618j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two simple Schiff bases applied for white light emission in an ionic liquid medium and peroxide sensing with an exceptional LOD.
Collapse
Affiliation(s)
- Yash B. Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| | - Vivek Anand
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan Mohali 140413, Punjab, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| |
Collapse
|
8
|
Yang JF, Tao Z, Redshaw C, Zeng X, Luo H. Color tuning and white light emission based on tetraphenylethylene-functionalized cucurbit[7]uril and FRET triggered by host-guest self-assembly. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Wang J, Hu H, Liu X, Zhou M, Lu Y, Zhou X. Feasible polarised white-light emission based on conjugate plane-structured yellow/blue dye molecules encapsulated in metal-organic frameworks. Chem Commun (Camb) 2021; 57:9736-9739. [PMID: 34474455 DOI: 10.1039/d1cc03553c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use a two-stage hierarchical growth method to encapsulate the blue KSN and yellow RhB molecules into a MOF crystal. By aligning these two conjugate plane-structured molecules in the MOF channel, a polarised white-light emission is obtained, with CIE coordinates of (0.3285, 0.3204) and a polarization ratio of 2.98.
Collapse
Affiliation(s)
- Jin Wang
- School of Telecommunication and Information Engineering, Nanjing University of Post and Telecommunications, Nanjing 210003, China.
| | - Huiqing Hu
- School of Telecommunication and Information Engineering, Nanjing University of Post and Telecommunications, Nanjing 210003, China.
| | - Xiaoli Liu
- School of Telecommunication and Information Engineering, Nanjing University of Post and Telecommunications, Nanjing 210003, China.
| | - Minxiang Zhou
- School of Telecommunication and Information Engineering, Nanjing University of Post and Telecommunications, Nanjing 210003, China.
| | - Yunqing Lu
- School of Telecommunication and Information Engineering, Nanjing University of Post and Telecommunications, Nanjing 210003, China.
| | - Xinhui Zhou
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
10
|
Gon M, Saotome S, Tanaka K, Chujo Y. Paintable Hybrids with Thermally Stable Dual Emission Composed of Tetraphenylethene-Integrated POSS and MEH-PPV for Heat-Resistant White-Light Luminophores. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12483-12490. [PMID: 33656311 DOI: 10.1021/acsami.0c22298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermally stable dual emission followed by white-light luminescence from hybrid materials is reported. Hybrid films were prepared with a spin-coating method with the mixture solution containing tetraphenylethene (TPE)-integrated polyhedral oligomeric silsesquioxane (POSS) and poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV). TPE-tethered POSS (TPE-POSS) showed high compatibility with MEH-PPV. Therefore, homogeneous films with variable concentrations of TPE-POSS were obtained. Owing to good dispersion of rigid silica cubes into matrices, POSS-containing films demonstrated high thermal stability toward molecular rearrangement by annealing as well as pyrolysis, similar to conventional polymer hybrids. Furthermore, it was found that TPE-POSS was able to enhance emission efficiencies, probably by suppressing chain aggregation. By modulating introduction ratios of TPE-POSS, dual-emission properties followed by white-light luminescence composed of cyan and orange emissions from TPE-POSS and MEH-PPV, respectively, were accomplished. It should be noted that these color balances can be preserved even in the high-temperature region (425 K). Finally, white-light luminescent materials with thermal durability were obtained.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoru Saotome
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Panja A, Bairi P, Halder D, Das S, Nandi AK. A robust stimuli responsive Eu 3+ - Metalo organic hydrogel and xerogel emitting white light. J Colloid Interface Sci 2020; 579:531-540. [PMID: 32623119 DOI: 10.1016/j.jcis.2020.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/13/2023]
Abstract
Recently, there is incredible growth on optoelectronic properties of new supramolecular gels and white-light-emitting (WLE) metalo-organic gel comprised with single lanthanide metal ion having stimuli-responsive property is not yet reported. Here, we report a mandelic acid (MA)-triethylene tetraamine (TETA)-Eu-acetate conjugate (4.5:1:0.4 mol ratio), producing stimuli-sensitive WLE hydrogel exhibiting thermoreversible, thixotropic, pH-switchable, self-standing and self-healing properties. Energy minimized structure suggests complexation between MA-TETA conjugate and Eu3+ ion. Fluorescence intensity of MA-TETA conjugate decreases with increasing Eu3+ concentration indicating energy transfer from MA-TETA to Eu3+. Decay of donor fluorescence intensity follows Stern-Volmer equation and energy transfer efficiency is 42%. WLE gel has Quantum yield 11.4% and Förster distance 1.7 Å. Hydrogel and xerogel show WLE on excitation at 330 and 350 nm having CIE coordinates (0.34, 0.33) and (0.28, 0.32), respectively. WLE gel has Correlated colour temperature 5148 K, appropriate for cool day light emission and on coating over UV-LED bulb it emits bright white light.
Collapse
Affiliation(s)
- Aditi Panja
- Polymer Science Unit, School of Materials Science, Jadavpur, Kolkata 700032, India
| | - Partha Bairi
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Debabrata Halder
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujoy Das
- Polymer Science Unit, School of Materials Science, Jadavpur, Kolkata 700032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Materials Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
12
|
Wei S, Li Z, Lu W, Liu H, Zhang J, Chen T, Tang BZ. Multicolor Fluorescent Polymeric Hydrogels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Zhao Li
- Institute of Engineering Medicine Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study The Hong Kong University of Science and Technology (HKUST) Clear Water Bay, Kowloon Hong Kong China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology) Guangzhou 510640 China
| | - Hao Liu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study The Hong Kong University of Science and Technology (HKUST) Clear Water Bay, Kowloon Hong Kong China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institutes State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
13
|
Wei S, Li Z, Lu W, Liu H, Zhang J, Chen T, Tang BZ. Multicolor Fluorescent Polymeric Hydrogels. Angew Chem Int Ed Engl 2020; 60:8608-8624. [DOI: 10.1002/anie.202007506] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Zhao Li
- Institute of Engineering Medicine Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study The Hong Kong University of Science and Technology (HKUST) Clear Water Bay, Kowloon Hong Kong China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology) Guangzhou 510640 China
| | - Hao Liu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study The Hong Kong University of Science and Technology (HKUST) Clear Water Bay, Kowloon Hong Kong China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institutes State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
14
|
Zhang Y, Ding Z, Liu Y, Zhang Y, Jiang S. White-light-emitting hydrogels with self-healing properties and adjustable emission colors. J Colloid Interface Sci 2020; 582:825-833. [PMID: 32911423 DOI: 10.1016/j.jcis.2020.08.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
White-light-emitting soft materials with self-healing properties show extensive applications in many fields. Herein, a novel self-healing hydrogel is successfully fabricated using oxidized dextran (Odex) and dithiodipropionate dihydrazide (TPH). Carbon dots (CDs), Riboflavin (Ri) and Rhodamine B (RhB) are incorporated into the gel matrix to produce white light emission through fluorescence resonance energy transfer (FRET) process, thus achieving excellent Commission Internationale de L'eclairage (CIE) coordinate value of (0.30, 0.33). The emission colors can be easily tuned via changing proportions of three emitters or the excitation wavelength. When the hydrogels are coated on an ultraviolet light-emitting diodes (UV LED), the hydrogel coating converts UV light to white light and repairs itself in 20 h while a hole is dug from it. Thanks to reversible exchanging reactions of acylhydrazone and disulfide bonds in hydrogel networks, the hydrogel coating exhibits perfect self-healing property in a wide range of pH (from 5 to 9 except for 7). The excellent emission and self-healing properties of hydrogels have great value in practical applications.
Collapse
Affiliation(s)
- Yangdaiyi Zhang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zeyang Ding
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuping Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shimei Jiang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
15
|
Yang L, Huang J, Qin M, Ma X, Dou X, Feng C. Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. NANOSCALE 2020; 12:6233-6238. [PMID: 32134412 DOI: 10.1039/d0nr00279h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chiral nanomaterials with circularly polarized luminescence (CPL) have attracted increasing attention as they show improved luminous efficiency and high contrast images in optical displays. Herein, nanotwisted fibers with bright full-color CPL are developed through the co-assembly of chiral phenylalanine derived gelators and achiral aromatic molecules. The synergic effect of π-π stacking and hydrogen bonding interactions between the chiral and achiral building blocks results in long-range ordered self-assembly, enabling the chirality of the gelators to be better transmitted to the achiral aromatic molecules. Highly ordered co-assemblies lead to the formation of supramolecular gels with high glum values which range up to 10-3. Moreover, nanoassemblies with white CPL are obtained by tuning the ratio of colorful achiral aromatic molecules in the gels. These nanotwisted gels show diverse colors or even white circularly polarized light when coated on UV chips, which enable their future application in the construction of low-cost and flexible light-emitting devices such as circularly polarized organic light-emitting diodes (CPOLEDs).
Collapse
Affiliation(s)
- Li Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Juexin Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Minggao Qin
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Xiaoyu Ma
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| |
Collapse
|
16
|
Sun G, Pan J, Wu Y, Liu Y, Chen W, Zhang Z, Su J. Supramolecular Assembly-Driven Color-Tuning and White-Light Emission Based on Crown-Ether-Functionalized Dihydrophenazine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10875-10882. [PMID: 32041400 DOI: 10.1021/acsami.0c00780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of color-tunable white-light-emitting systems is significant for artificial smart materials. Recently, a set of conformational dependent fluorophores N,N'-diaryl-dihydrodibenzo[a,c]phenazines (DPACs) have been developed with unique photoluminescence mechanism vibration-induced emission (VIE). DPACs can emit intrinsical blue emission at a bent excited state and abnormal orange-red emission at a planar excited state, which are due to the varied π-conjugation via excited-state configuration transformation along the N-N' axis from bent to planar form. Herein, a novel VIE-active compound DPAC-[B15C5]2 is designed and synthesized with two wings of benzo-15-crown-5. The excited-state vibration of the DPAC moiety can be modulated by tuning the supramolecular assembly and disassembly via chelation competition of K+ between 15-crown-5 and 18-crown-6, and hence, a wide-color-tuning emission is achieved from blue to orange-red including white. Dynamic light scattering and transmission electron microscopy experiments were conducted to exhibit the supramolecular assembling process. Additionally, the moisture detection in organic solvents is realized since the water could dissociate the supramolecular assembly.
Collapse
Affiliation(s)
- Guangchen Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jiajie Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yifan Wu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yue Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Wei Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
17
|
Kundu S, Sk B, Pallavi P, Giri A, Patra A. Molecular Engineering Approaches Towards All‐Organic White Light Emitting Materials. Chemistry 2020; 26:5557-5582. [DOI: 10.1002/chem.201904626] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Subhankar Kundu
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Bahadur Sk
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Pragyan Pallavi
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Arkaprabha Giri
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Abhijit Patra
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
18
|
Bhaumik SK, Banerjee S. Tunable multi-color luminescence from a self-assembled cyanostilbene and cucurbit[7]uril in aqueous media. Chem Commun (Camb) 2020; 56:655-658. [DOI: 10.1039/c9cc09277c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tunable multicolor luminescent supramolecular system was designed in aqueous media employing the self-assembly of a cationic amphiphilic cyanostilbene and the host–guest chemistry of cucurbit[7]uril.
Collapse
Affiliation(s)
- Shubhra Kanti Bhaumik
- The Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | - Supratim Banerjee
- The Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| |
Collapse
|
19
|
Fan K, Wang X, Ma Y, Yang H, Han G, Zhou L, Fang S. Terpyridine-functionalized chemically cross-linked polyacrylamide hydrogel for white emission and multistimuli-responsive behaviour. NEW J CHEM 2020. [DOI: 10.1039/d0nj01269f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient and multifunctional white-emitting hydrogel was fabricated using a facile copolymerization process by introducing a hydrophilic terpyridine-based chromophore into a polyacrylamide network.
Collapse
Affiliation(s)
- Kaiqi Fan
- School of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Xiaobo Wang
- Journal Editorial Department
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Yongpeng Ma
- School of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Haoran Yang
- School of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Guanglu Han
- School of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Liming Zhou
- School of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Shaoming Fang
- School of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| |
Collapse
|
20
|
Sagara Y, Karman M, Seki A, Pannipara M, Tamaoki N, Weder C. Rotaxane-Based Mechanophores Enable Polymers with Mechanically Switchable White Photoluminescence. ACS CENTRAL SCIENCE 2019; 5:874-881. [PMID: 31139723 PMCID: PMC6535770 DOI: 10.1021/acscentsci.9b00173] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 05/05/2023]
Abstract
Three mechanoresponsive polyurethane elastomers whose blue, green, and orange photoluminescence can be reversibly turned on by mechanical force were prepared and combined to create a blend that exhibits deformation-induced white photoluminescence. The three polyurethanes contain rotaxane-based supramolecular mechanoluminophores based on π-extended pyrene, anthracene, or 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) luminophores, respectively, and 1,4,5,8-naphthalenetetracarboxylic diimide as an electronically matched quencher. Each polymer shows instantly reversible, strain-dependent switching of its photoluminescence intensity when stretched and relaxed, as deformation leads to a spatial separation of the luminophore and quencher. The present study shows that the photoluminescence color can easily be tailored by variation of the luminophore and also by combining several mechanophores in one material and demonstrates that adaptability is a key advantage of supramolecular approaches to create mechanoresponsive polymers.
Collapse
Affiliation(s)
- Yoshimitsu Sagara
- Research
Institute for Electronic Science, Hokkaido
University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Marc Karman
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Atsushi Seki
- Research
Institute for Electronic Science, Hokkaido
University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan
| | - Mehboobali Pannipara
- Research
Institute for Electronic Science, Hokkaido
University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan
- Department
of Chemistry, Faculty of Science, King Khalid
University, Guraiger, Abha 61413, Saudi Arabia
| | - Nobuyuki Tamaoki
- Research
Institute for Electronic Science, Hokkaido
University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan
| | - Christoph Weder
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
21
|
Pratibha, Shukla M, Kaul G, Chopra S, Verma S. Nucleobase Soft Metallogel Composites with Antifouling Activities against ESKAPE Pathogens. ChemistrySelect 2019. [DOI: 10.1002/slct.201803693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pratibha
- Department of ChemistryCenter for Environmental Science and EngineeringIndian Institute of Technology Kanpur Kanpur 208016 (UP) India
| | - Manjulika Shukla
- Division of MicrobiologyCSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031 India
| | - Grace Kaul
- Division of MicrobiologyCSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031 India
| | - Sidharth Chopra
- Division of MicrobiologyCSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031 India
| | - Sandeep Verma
- Department of ChemistryCenter for Environmental Science and EngineeringIndian Institute of Technology Kanpur Kanpur 208016 (UP) India
- DST Thematic Unit of Excellence on Soft NanofabricationIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
22
|
Sinha S, Chowdhury B, Ghorai UK, Ghosh P. Multitasking behaviour of a small organic compound: solid state bright white-light emission, mechanochromism and ratiometric sensing of Al(iii) and pyrophosphate. Chem Commun (Camb) 2019; 55:5127-5130. [DOI: 10.1039/c8cc10258a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Solid state bright white-light emission, mechanochromism and ratiometric fluorescence sensing of Al3+ and pyrophosphate by a single organic molecule are demonstrated.
Collapse
Affiliation(s)
- Sanghamitra Sinha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Bijit Chowdhury
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry
- Ramakrishna Mission Vidyamandira & Swami Vivekananda Research Center
- Belur Math
- India
| | - Pradyut Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
23
|
Zhu CN, Bai T, Wang H, Bai W, Ling J, Sun JZ, Huang F, Wu ZL, Zheng Q. Single Chromophore-Based White-Light-Emitting Hydrogel with Tunable Fluorescence and Patternability. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39343-39352. [PMID: 30351900 DOI: 10.1021/acsami.8b12619] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bioluminescence is widespread in nature such as the jellyfish, which inspires scientists to design polymer hydrogels with tunable fluorescence. However, it remains a big challenge to develop white-light-emitting hydrogels with local tunability of the fluorescent behavior. Herein, we report a white fluorescent hydrogel prepared by one-pot micellar copolymerization of hydrophilic acrylamide and hydrophobic single donor-acceptor chromophore monomer, in which the unimer and the dimer of the chromophore coexist and generate high- and low-energy emission, respectively, under excitation. The fluorescent behavior of the hydrogel can be well tuned by phototreatment or heat treatment that induces unimer-to-dimer transformation of the chromophore and thus variation of the fluorescent color from blue to white and then to yellow. The fluorescence can also be reversibly switched off by forming terpyridine-Cu2+ chelate complexes and recovered by using chelating agent to extract the Cu2+ ions out of the gel matrix. These properties afford patterning the fluorescent hydrogel, which is transparent under daylight yet shows the pattern under ultraviolet light. These patterned fluorescent hydrogels should find applications in protected message display for improved information security.
Collapse
|
24
|
Feng X, Qi C, Feng HT, Zhao Z, Sung HHY, Williams ID, Kwok RTK, Lam JWY, Qin A, Tang BZ. Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chem Sci 2018; 9:5679-5687. [PMID: 30062002 PMCID: PMC6050622 DOI: 10.1039/c8sc01709c] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
This article presents a new strategy to achieve white-light emission from single tetraphenylethylene-substituted pyrenes (TPE-Pys) with aggregation-induced emission (AIE) characteristics. TPE-Pys were synthesized by a Pd-catalyzed coupling reaction of a boronic acid or pinacol ester of pyrene and tetraphenylethylene (TPE) derivatives and showed multicolor emission by introducing different substituents on the phenyl rings of TPE. TPE-Pys with a TPE unit at the 1-position and asymmetric TPE units at 2,7-positions show dual fluorescence in THF/water mixtures to realize white-light emission with CIE coordinates of (x = 0.30 and y = 0.41) and (x = 0.21 and y = 0.16), respectively. The structure-property relationship of TPE-Pys were investigated to elucidate the origin of the white emission. The results showed that due to the weak electronic interaction of pyrene and its chromophoric units at the 2,7-positions and the constraint of the rotation of the TPE unit at the 1-position of pyrene, each component can exhibit its own emission color. The combination of appropriate colors gives rise to white-light emission. Such a principle of molecular design may open a new avenue for preparing advanced multicolor and multifunctional optical materials for organic electronics.
Collapse
Affiliation(s)
- Xing Feng
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Chunxuan Qi
- NSFC Center for Luminescence from Molecular Aggregates , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Hai-Tao Feng
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Zheng Zhao
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Herman H Y Sung
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ian D Williams
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ryan T K Kwok
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Jacky W Y Lam
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Anjun Qin
- NSFC Center for Luminescence from Molecular Aggregates , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study and Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
- NSFC Center for Luminescence from Molecular Aggregates , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech ParkNanshan , Shenzhen 518057 , P. R. China
| |
Collapse
|
25
|
Zhu Q, Zhang L, Van Vliet K, Miserez A, Holten-Andersen N. White Light-Emitting Multistimuli-Responsive Hydrogels with Lanthanides and Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10409-10418. [PMID: 29481036 DOI: 10.1021/acsami.7b17016] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymers that confer changes in optical properties in response to chemical or mechanical cues offer diverse sensing applications, particularly if this stimuli response is accessible in humid or aqueous environments. In this study, luminescent hydrogels were fabricated using a facile aqueous process by incorporating lanthanide ions and carbon dots (CD) into a network of polyacrylamide and poly(acrylic acid). White luminescence was obtained by tuning the balance of blue-light-emitting CD to green- and red-light-emitting lanthanide ions. Exploiting the combined specific sensitivities of the different emitters, the luminescent hydrogel showed chromic responsiveness to multiple stimuli, including pH, organic vapors, transition-metal ions, and temperature. The white-light-emitting hydrogel was also stretchable with a fracture strain of 400%. We envision this photoluminescent hydrogel to be a versatile and multifunctional material for chemical and environmental sensing.
Collapse
Affiliation(s)
- Qingdi Zhu
- BioSystems and Micromechanics Interdisciplinary Research Group , Singapore-MIT Alliance for Research and Technology (SMART) Centre, CREATE , 138602 , Singapore
| | - Lihong Zhang
- Biological & Biomimetic Material Laboratory, School of Materials Science & Engineering , Nanyang Technological University , 637553 , Singapore
| | - Krystyn Van Vliet
- BioSystems and Micromechanics Interdisciplinary Research Group , Singapore-MIT Alliance for Research and Technology (SMART) Centre, CREATE , 138602 , Singapore
| | - Ali Miserez
- Biological & Biomimetic Material Laboratory, School of Materials Science & Engineering , Nanyang Technological University , 637553 , Singapore
- School of Biological Sciences , Nanyang Technological University , 637551 , Singapore
| | | |
Collapse
|
26
|
Pang X, Yu X, Xie D, Li Y, Geng L, Ren J, Zhen X. Tunable multicolor emissions in a monocomponent gel system by varying the solvent, temperature and fluoride anion. Org Biomol Chem 2018; 14:11176-11182. [PMID: 27834972 DOI: 10.1039/c6ob02007k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The facile tuning of the fluorescent properties of organogels is highly desirable for optical switches, light-emitting diodes, chemosensors and bioprobes. The design of organic molecules with multiple emission colors but only one molecular platform remains challenging. Herein, a new cholesterol-based organogelator N1 containing D-A pairs (salicylaldehyde and naphthalimide units) was designed. We successfully obtained multiple solvent-tuned emission colors in both the solution and gel states using a unimolecular platform. Moreover, the effects of the solvent on the gel morphology, rheology and anion-responsive properties were studied. Finally, we showed that the gel in benzene displayed reversible thermochromic properties with changes in emission color from yellow-green to red. Several experiments suggested that a short-distance and ordered array of the D-A pairs facilitated the efficient intermolecular electron transfer of the fluorophores.
Collapse
Affiliation(s)
- Xuelei Pang
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Xudong Yu
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Dongyan Xie
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Yajuan Li
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Lijun Geng
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Jujie Ren
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Xiaoli Zhen
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| |
Collapse
|
27
|
Anand V, Sadhasivam B, Dhamodharan R. Facile synthesis of triphenylamine and phenothiazine-based Schiff bases for aggregation-induced enhanced emission, white light generation, and highly selective and sensitive copper(ii) sensing. NEW J CHEM 2018. [DOI: 10.1039/c8nj03316a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile synthesis of triphenylamine and phenothiazine based Schiff bases for multiple applicability, viz., in AIEE, WLE and Cu2+ sensing.
Collapse
Affiliation(s)
- Vivek Anand
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | - Balaji Sadhasivam
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | | |
Collapse
|
28
|
Pallavi P, Sk B, Ahir P, Patra A. Tuning the Förster Resonance Energy Transfer through a Self-Assembly Approach for Efficient White-Light Emission in an Aqueous Medium. Chemistry 2017; 24:1151-1158. [DOI: 10.1002/chem.201704437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Pragyan Pallavi
- Department of Chemistry; Indian Institute of Science Education and Research; Bhopal India
| | - Bahadur Sk
- Department of Chemistry; Indian Institute of Science Education and Research; Bhopal India
| | - Palak Ahir
- Department of Chemistry; Indian Institute of Science Education and Research; Bhopal India
| | - Abhijit Patra
- Department of Chemistry; Indian Institute of Science Education and Research; Bhopal India
| |
Collapse
|
29
|
Nowicka-Scheibe J, Pawlukojć A, Sobczyk L, Jański J. On 2:1 melamine – Squaric acid dihydrate complex: The structure and vibrational spectra. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Anand V, Dhamodharan R. White light emission from fluorene-EDOT and phenothiazine-hydroquinone based D–π–A conjugated systems in solution, gel and film forms. NEW J CHEM 2017. [DOI: 10.1039/c7nj01064h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The appropriate composition of two new D–π–A conjugated organic molecules in combination with rhodamine B is observed to emit cool white light in solution and solid states.
Collapse
Affiliation(s)
- Vivek Anand
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | | |
Collapse
|
31
|
Xu Z, Peng S, Wang YY, Zhang JK, Lazar AI, Guo DS. Broad-Spectrum Tunable Photoluminescent Nanomaterials Constructed from a Modular Light-Harvesting Platform Based on Macrocyclic Amphiphiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7666-71. [PMID: 27346287 DOI: 10.1002/adma.201601719] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Indexed: 05/27/2023]
Abstract
Broad-spectrum tunable photoluminescent nanomaterials are developed based on macrocyclic amphiphiles serving as a novel modular light-harvesting platform with discrete addressability of luminophores in a noncovalent way. By simply varying the donor/acceptor ratio, a broad spectrum of energy transfer outputs is achieved, pointing toward a proof-of-principle application as fluorescent inks for security printing.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Shu Peng
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Ying Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Ji-Kai Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Alexandra I Lazar
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759, Bremen, Germany
| | - Dong-Sheng Guo
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Beztsinna N, Tsvetkova Y, Bartneck M, Lammers T, Kiessling F, Bestel I. Amphiphilic Phospholipid-Based Riboflavin Derivatives for Tumor Targeting Nanomedicines. Bioconjug Chem 2016; 27:2048-61. [DOI: 10.1021/acs.bioconjchem.6b00317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nataliia Beztsinna
- Institute of Chemistry & Biology of Membranes & Nano-objects, CBMN UMR 5248, Bordeaux University, 33600 Pessac, France
| | - Yoanna Tsvetkova
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Matthias Bartneck
- Gastroenterology
and Metabolic Disorders, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Twan Lammers
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Fabian Kiessling
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Isabelle Bestel
- Institute of Chemistry & Biology of Membranes & Nano-objects, CBMN UMR 5248, Bordeaux University, 33600 Pessac, France
| |
Collapse
|
33
|
Beztsinna N, Solé M, Taib N, Bestel I. Bioengineered riboflavin in nanotechnology. Biomaterials 2016; 80:121-133. [DOI: 10.1016/j.biomaterials.2015.11.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
|
34
|
Xu Z, Zhang Y, Zhang A, Zhao K, Li Y, Yu X. Morphology transformation between nanofibres and vesicles controlled by ultrasound and heat in tryptamine-based assembly. Supramol Chem 2016. [DOI: 10.1080/10610278.2015.1127375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhice Xu
- College of Chemical Engineering, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Yan Zhang
- College of Chemical Engineering, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Ao Zhang
- College of Chemical Engineering, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Kun Zhao
- College of Chemical Engineering, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Yajuan Li
- College of Chemical Engineering, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Xudong Yu
- College of Chemical Engineering, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| |
Collapse
|
35
|
Suzuki D, Abe H, Inouye M. Discrete Molecular Recognition Induced Higher-Order Structures: Fibrous Formation Triggered by Melamine Recognition with a Cationic Ethynylpyridine Macrocyclic Host. Org Lett 2016; 18:320-3. [DOI: 10.1021/acs.orglett.5b03502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daiki Suzuki
- Graduate School of Pharmaceutical
Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hajime Abe
- Graduate School of Pharmaceutical
Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical
Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
36
|
Manna MK, Aaryashree, Verma S, Mukherjee S, Das AK. Lamellar Peptide-Cadmium-Doped Zinc Oxide Nanohybrids That Emit White Light. Chempluschem 2016; 81:329-337. [PMID: 31968787 DOI: 10.1002/cplu.201500402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/20/2015] [Indexed: 12/13/2022]
Abstract
A variety of hybrid nanostructures have been developed that emit white light. Two different white-light-emitting systems are reported. These are cadmium-doped zinc oxide nanosheets and complex lamellar nanostructures that consist of alternating inorganic cadmium-doped zinc oxide domains with the self-assembled aromatic-capped peptide BPI-FF-OH (BPI: benzo[ghi]perylene monoimide, F: d-phenylalanine). An electrochemical method is employed to synthesize cadmium-doped zinc oxide nanosheets and lamellar organic/cadmium-doped zinc oxide nanoflakes on a gallium-doped ZnO/p-Si (111) substrate. External structural features and internal structural ordering of wurtzite cadmium-doped zinc oxide and lamellar organic/cadmium-doped zinc oxide nanohybrids are characterized by small-angle X-ray scattering, XRD, field-emission SEM, energy-dispersive X-ray spectroscopy, secondary-ion mass spectrometry, ellipsometry, and photoluminescence spectroscopy. Cadmium-doped zinc oxide nanosheets and lamellar organic/cadmium-doped zinc oxide hybrids emit white light with a broad emission covering the visible spectrum from λ=415 to 700 nm. Characteristic white-light emissions of both materials were well characterized by photoluminescence studies. The white-light luminescence is attributed to cadmium doping in the zinc oxide crystal and the presence of the dipeptide-functionalized BPI fluorophore in the lamellar nanohybrid.
Collapse
Affiliation(s)
- Manoj K Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Aaryashree
- Hybrid Nanodevice Research Group (HNRG), Electrical Engineering, Indian Institute of Technology (IIT), Indore, India
| | - Shruti Verma
- Hybrid Nanodevice Research Group (HNRG), Electrical Engineering, Indian Institute of Technology (IIT), Indore, India
| | - Shaibal Mukherjee
- Hybrid Nanodevice Research Group (HNRG), Electrical Engineering, Indian Institute of Technology (IIT), Indore, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
37
|
Malakar P, Modak D, Prasad E. Pure white light emission from organic molecules using solvent induced selective self-assembly. Chem Commun (Camb) 2016; 52:4309-12. [DOI: 10.1039/c5cc10112c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selectively promoting and preventing aggregation of structurally similar anthracene derivatives to obtain pure white light emission.
Collapse
Affiliation(s)
- Partha Malakar
- Department of Chemistry
- Indian Institute of Technology Madras (IITM)
- Chennai 600036
- India
| | - Debadrita Modak
- Department of Chemistry
- Indian Institute of Technology Madras (IITM)
- Chennai 600036
- India
| | - Edamana Prasad
- Department of Chemistry
- Indian Institute of Technology Madras (IITM)
- Chennai 600036
- India
| |
Collapse
|
38
|
Duan HB, Yu SS, Tong YB, Zhou H, Ren XM. Two in one: switchable ion conductivity and white light emission integrated in an iodoplumbate-based twin chain hybrid crystal. Dalton Trans 2016; 45:4810-8. [DOI: 10.1039/c5dt04594k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [Pb2I6]∝ twin chain hybrid crystal shows novel switchable ion conductivity arising from the structural phase transition and color-tunable photoluminescence attributed to the broadband semiconductor emission of twin chain.
Collapse
Affiliation(s)
- Hai-Bao Duan
- School of Environmental Science
- Nanjing Xiaozhuang University
- Nanjing 211171
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Science
| | - Shan-Shan Yu
- School of Environmental Science
- Nanjing Xiaozhuang University
- Nanjing 211171
- P. R. China
| | - Yuan-Bo Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Science
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Hong Zhou
- School of Environmental Science
- Nanjing Xiaozhuang University
- Nanjing 211171
- P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Science
- Nanjing Tech University
- Nanjing 210009
- P. R. China
- College of Materials Science and Engineering
| |
Collapse
|
39
|
Abstract
White-light emission from boron based molecular siblings.
Collapse
Affiliation(s)
- Samir Kumar Sarkar
- Inorganic and Physical Chemistry Department
- Indian Institute of Science
- Bangalore
- India
| | - George Rajendra Kumar
- Inorganic and Physical Chemistry Department
- Indian Institute of Science
- Bangalore
- India
| | - Pakkirisamy Thilagar
- Inorganic and Physical Chemistry Department
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|
40
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1342] [Impact Index Per Article: 134.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
41
|
Yu X, Ge X, Lan H, Li Y, Geng L, Zhen X, Yi T. Tunable and Switchable Control of Luminescence through Multiple Physical Stimulations in Aggregation-Based Monocomponent Systems. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24312-24321. [PMID: 26462144 DOI: 10.1021/acsami.5b08402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This report describes how the luminescence of naphthalimide could be tuned by various physical stimuli, including heat, sonication, and grinding. Herein, instant and switchable control of color and fluorescent emissions has been achieved by the sonication-triggered gelation of an organic liquid with naphthalimide-based organogelators (N3-N7). Green emissive suspensions of the gelators in organic liquids are transformed into orange emissive gels upon brief irradiation with ultrasound with an emission wavelength red-shift of approximately 60 nm and fluorescence intensity quenching by a factor of 20, which can subsequently be reversed by heating. When sonication-triggered S-gels are evaporated to S-xerogels, the solid state xerogels (N3, N4, N6, N7) exhibit mechanochromism, the color of which changes from red to yellow and the emission color of which changes from orange to green with enhanced intensity by grinding. This mechanochromic property can be reversed through a regelation process. The mechanochromic character of the S-xerogel of N3 is thus applied to quantitatively sense the mechanical pressure range from 2 to 40 MPa through fluorescence changes, reflecting a new type of application for gelation assembly. The physical stimuli triggered fluorescence changes of these compounds strongly depend on the molecular structure and solvent. The results demonstrate that the different aggregation modes and long-range order arrangement of the molecules regulated by the stimulus may affect the internal charge transfer (ICT) process of the naphthalimide groups, resulting in the tunability of the photophysical properties of the gelators. This report provides a new strategy for tunable and switchable control of luminescence through nonchemical stimuli in aggregation-based monocomponent systems.
Collapse
Affiliation(s)
- Xudong Yu
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Xiaoting Ge
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Haichuang Lan
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Yajuan Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Lijun Geng
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Xiaoli Zhen
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology , Yuhua Road 70, Shijiazhuang 050080, China
| | - Tao Yi
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
42
|
Chen P, Li Q, Grindy S, Holten-Andersen N. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties. J Am Chem Soc 2015; 137:11590-3. [PMID: 26301493 DOI: 10.1021/jacs.5b07394] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have developed model light-emitting metallogels functionalized with lanthanide metal-ligand coordination complexes via a terpyridyl-end-capped four-arm poly(ethylene glycol) polymer. The optical properties of these highly luminescent polymer networks are readily modulated over a wide spectrum, including white-light emission, simply by tuning of the lanthanide metal ion stoichiometry. Furthermore, the dynamic nature of the Ln-N coordination bonding leads to a broad variety of reversible stimuli-responsive properties (mechano-, vapo-, thermo-, and chemochromism) of both sol-gel systems and solid thin films. The versatile functional performance combined with the ease of assembly suggests that this lanthanide coordination polymer design approach offers a robust pathway for future engineering of multi-stimuli-responsive polymer materials.
Collapse
Affiliation(s)
- Pangkuan Chen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qiaochu Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Scott Grindy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Qu R, Shen L, Qu A, Wang R, An Y, Shi L. Artificial Peroxidase/Oxidase Multiple Enzyme System Based on Supramolecular Hydrogel and Its Application as a Biocatalyst for Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16694-16705. [PMID: 26173996 DOI: 10.1021/acsami.5b04398] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inspired by delicate structures and multiple functions of natural multiple enzyme architectures such as peroxisomes, we constructed an artificial multiple enzyme system by coencapsulation of glucose oxidases (GOx) and artificial peroxidases in a supramolecular hydrogel. The artificial peroxidase was a functional complex micelle, which was prepared by the self-assembly of diblock copolymer and hemin. Compared with catalase or horseradish peroxidase (HRP), the functional micelle exhibited comparable activity and better stability, which provided more advantages in constructing a multienzyme with a proper oxidase. The hydrogel containing the two catalytic centers was further used as a catalyst for green oxidation of glucose, which was a typical cascade reaction. Glucose was oxidized by oxygen (O2) via the GOx-mediated reaction, producing toxic intermediate hydrogen peroxide (H2O2). The produced H2O2 further oxidized peroxidase substrates catalyzed by hemin-micelles. By regulating the diffusion modes of the enzymes and substrates, the artificial multienzyme based on hydrogel could successfully activate the cascade reaction, which the soluble enzyme mixture could not achieve. The hydrogel, just like a protective covering, protected oxidases and micelles from inactivation via toxic intermediates and environmental changes. The artificial multienzyme could efficiently achieve the oxidation task along with effectively eliminating the toxic intermediates. In this way, this system possesses great potentials for glucose detection and green oxidation of a series of substrates related to biological processes.
Collapse
Affiliation(s)
- Rui Qu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Liangliang Shen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Aoting Qu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Ruolin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
44
|
Wang L, Fan F, Cao W, Xu H. Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16054-60. [PMID: 26154159 DOI: 10.1021/acsami.5b04419] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in cell signaling and redox homeostasis and are strongly related to metabolic activities. The increase of the ROS concentration in organisms can result in several diseases, such as cardiovascular diseases and cancer. The concentration of ROS in biologically relevant conditions is typically as low as around tens of micromolars to 100 μM H2O2, which makes it necessary to develop ultrasensitive ROS-responsive systems. A general approach is reported here to fabricate an ultrasensitive ROS-responsive system via coassembly between tellurium-containing molecules and phospholipids, combining the ROS-responsiveness of tellurium and the biocompatibility of phospholipids. By using dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and NMR spectra, coassembly behaviors and the responsiveness of the coassemblies have been investigated. These coassemblies can respond to 100 μM H2O2, which is a biologically relevant ROS concentration, and demonstrate reversible redox properties.
Collapse
Affiliation(s)
- Lu Wang
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Fuqiang Fan
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- ‡The Research Centre for Molecular Science and Engineering, Northeastern University, Shenyang, 110004, People's Republic of China
| | - Wei Cao
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huaping Xu
- †Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
45
|
Dong R, Pang Y, Su Y, Zhu X. Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 2015. [PMID: 26221932 DOI: 10.1039/c4bm00448e] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a novel class of three-dimensional (3D) hydrophilic cross-linked polymers, supramolecular hydrogels not only display unique physicochemical properties (e.g., water-retention ability, drug loading capacity, biodegradability and biocompatibility, biostability) as well as specific functionalities (e.g., optoelectronic properties, bioactivity, self-healing ability, shape memory ability), but also have the capability to undergo reversible gel-sol transition in response to various environmental stimuli inherent to the noncovalent cross-linkages, thereby showing great potential as promising biomaterial scaffolds for diagnosis and therapy. In this Review, we summarized the recent progress in the design and synthesis of supramolecular hydrogels through specific, directional noncovalent interactions, with particular emphasis on the structure-property relationship, as well as their wide-ranging applications in disease diagnosis and therapy including bioimaging, biodetection, therapeutic delivery, and tissue engineering. We believe that these current achievements in supramolecular hydrogels will greatly stimulate new ideas and inspire persistent efforts in this hot topic area in future.
Collapse
Affiliation(s)
- Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | | | | | | |
Collapse
|
46
|
Bhattacharyya S, Jana B, Patra A. Multichromophoric Organic Molecules Encapsulated in Polymer Nanoparticles for Artificial Light Harvesting. Chemphyschem 2015; 16:796-804. [DOI: 10.1002/cphc.201402723] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/18/2014] [Indexed: 11/10/2022]
|
47
|
Cao X, Lan H, Li Z, Mao Y, Chen L, Wu Y, Yi T. White light emission from a two-component hybrid gel via an energy transfer process. Phys Chem Chem Phys 2015; 17:32297-303. [DOI: 10.1039/c5cp05232g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A two-component light-harvesting organogel containing a naphthalimide-based gelator as a donor and a phosphorescent Ir(iii) complex as an acceptor was used to produce white-light-emitting organogels.
Collapse
Affiliation(s)
- Xinhua Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Department of Chemistry and Collaborative Innovation Center of Energy Materials
| | - Haichuang Lan
- Department of Chemistry and Collaborative Innovation Center of Energy Materials
- Fudan University
- Shanghai 200433
- China
| | - Zhenhua Li
- Department of Chemistry and Collaborative Innovation Center of Energy Materials
- Fudan University
- Shanghai 200433
- China
| | - Yueyuan Mao
- Department of Chemistry and Collaborative Innovation Center of Energy Materials
- Fudan University
- Shanghai 200433
- China
| | - Liming Chen
- Department of Chemistry and Collaborative Innovation Center of Energy Materials
- Fudan University
- Shanghai 200433
- China
| | - Yongquan Wu
- Department of Chemistry and Collaborative Innovation Center of Energy Materials
- Fudan University
- Shanghai 200433
- China
| | - Tao Yi
- Department of Chemistry and Collaborative Innovation Center of Energy Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
48
|
Ohsedo Y, Taniguchi M, Oono M, Saruhashi K, Watanabe H. Long-chain alkylamide-derived oil gels: mixing induced onset of thixotropy and application in sustained drug release. NEW J CHEM 2015. [DOI: 10.1039/c5nj00999e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oil gels composed of long-chain alkylamides exhibited thixotropic properties, although the same property was absent in each alkylamide.
Collapse
Affiliation(s)
- Yutaka Ohsedo
- Advanced Materials Research Laboratory
- Collaborative Research Division, Art, Science and Technology Center for Cooperative Research
- Kyushu University
- Nishi-ku
- Japan
| | - Makiko Taniguchi
- Advanced Materials Research Laboratory
- Collaborative Research Division, Art, Science and Technology Center for Cooperative Research
- Kyushu University
- Nishi-ku
- Japan
| | | | | | - Hisayuki Watanabe
- Advanced Materials Research Laboratory
- Collaborative Research Division, Art, Science and Technology Center for Cooperative Research
- Kyushu University
- Nishi-ku
- Japan
| |
Collapse
|
49
|
Ozawa A, Shimizu A, Nishiyabu R, Kubo Y. Thermo-responsive white-light emission based on tetraphenylethylene- and rhodamine B-containing boronate nanoparticles. Chem Commun (Camb) 2015; 51:118-21. [DOI: 10.1039/c4cc07405j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
White-light emissive boronate nanoparticles have been prepared, which exhibit reversible and thermo-responsive emission in the investigated temperature range (5–65 °C) with a temperature sensitivity of 1.1% K−1 in water.
Collapse
Affiliation(s)
- Ayumi Ozawa
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Ai Shimizu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
50
|
Maity A, Ali F, Agarwalla H, Anothumakkool B, Das A. Tuning of multiple luminescence outputs and white-light emission from a single gelator molecule through an ESIPT coupled AIEE process. Chem Commun (Camb) 2015; 51:2130-3. [DOI: 10.1039/c4cc09211b] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A single gelator molecule (1) shows an ESIPT coupled AIEE process for generating multiple luminescent colors, including white-light, with varying aggregation as a function of the water content in a THF–water mixture. Luminescent property of 1 is retained in gel as well as in solid state.
Collapse
Affiliation(s)
- Arunava Maity
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Firoj Ali
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Hridesh Agarwalla
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Bihag Anothumakkool
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Amitava Das
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|