1
|
Artico M, Roux C, Peruch F, Mingotaud AF, Montanier CY. Grafting of proteins onto polymeric surfaces: A synthesis and characterization challenge. Biotechnol Adv 2023; 64:108106. [PMID: 36738895 DOI: 10.1016/j.biotechadv.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
This review aims at answering the following question: how can a researcher be sure to succeed in grafting a protein onto a polymer surface? Even if protein immobilization on solid supports has been used industrially for a long time, hence enabling natural enzymes to serve as a powerful tool, emergence of new supports such as polymeric surfaces for the development of so-called intelligent materials requires new approaches. In this review, we introduce the challenges in grafting protein on synthetic polymers, mainly because compared to hard surfaces, polymers may be sensitive to various aqueous media, depending on the pH or reductive molecules, or may exhibit state transitions with temperature. Then, the specificity of grafting on synthetic polymers due to difference of chemical functions availability or difference of physical properties are summarized. We present next the various available routes to covalently bond the protein onto the polymeric substrates considering the functional groups coming from the monomers used during polymerization reaction or post-modification of the surfaces. We also focus our review on a major concern of grafting protein, which is avoiding the potential loss of function of the immobilized protein. Meanwhile, this review considers the different methods of characterization used to determine the grafting efficiency but also the behavior of enzymes once grafted. We finally dedicate the last part of this review to industrial application and future prospective, considering the sustainable processes based on green chemistry.
Collapse
Affiliation(s)
- M Artico
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - C Roux
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France
| | - F Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, France
| | - A-F Mingotaud
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France.
| | - C Y Montanier
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
2
|
Wright TA, Bennett C, Johnson MR, Fischesser H, Chandrarathne BM, Ram N, Maloof E, Tyler A, Upshaw CR, Stewart JM, Page RC, Konkolewicz D. Investigating the Impact of Polymer Length, Attachment Site, and Charge on Enzymatic Activity and Stability of Cellulase. Biomacromolecules 2022; 23:4097-4109. [PMID: 36130239 DOI: 10.1021/acs.biomac.2c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermophilic cellulase Cel5a from Fervidobacterium nodosum (FnCel5a) was conjugated with neutral, cationic, and anionic polymers of increasing molecular weights. The enzymatic activity toward an anionic soluble cellulose derivative, thermal stability, and functional chemical stability of these bioconjugates were investigated. The results suggest that increasing polymer chain length for polymers compatible with the substrate enhances the positive impact of polymer conjugation on enzymatic activity. Activity enhancements of nearly 100% were observed for bioconjugates with N,N-dimethyl acrylamide (DMAm) and N,N-dimethyl acrylamide-2-(N,N-dimethylamino)ethyl methacrylate (DMAm/DMAEMA) due to proposed polymer-substrate compatibility enabled by potential noncovalent interactions. Double conjugation of two functionally distinct polymers to wild-type and mutated FnCel5a using two conjugation methods was achieved. These doubly conjugated bioconjugates exhibited similar thermal stability to the unmodified wild-type enzyme, although enzymatic activity initially gained from conjugation was lost, suggesting that chain length may be a better tool for bioconjugate activity modulation than double conjugation.
Collapse
Affiliation(s)
- Thaiesha A Wright
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Camaryn Bennett
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Madolynn R Johnson
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Henry Fischesser
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | | | - Natasha Ram
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 3620, United States
| | - Elias Maloof
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Amoni Tyler
- Department of Agricultural and Life Sciences, Central State University, 1400 Brush Row Road, Wilberforce, Ohio 45384, United States
| | - Chanell R Upshaw
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Jamie M Stewart
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| |
Collapse
|
3
|
Anuganti M, Fu H, Ekatan S, Kumar CV, Lin Y. Kinetic Study on Enzymatic Hydrolysis of Cellulose in an Open, Inhibition-Free System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5180-5192. [PMID: 33872034 DOI: 10.1021/acs.langmuir.1c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the complexity of cellulases and the requirement of enzyme adsorption on cellulose prior to reactions, it is difficult to evaluate their reaction with a general mechanistic scheme. Nevertheless, it is of great interest to come up with an approximate analytic description of a valid model for the purpose of developing an intuitive understanding of these complex enzyme systems. Herein, we used the surface plasmonic resonance method to monitor the action of a cellobiohydrolase by itself, as well as its mixture with a synergetic endoglucanase, on the surface of a regenerated model cellulose film, under continuous flow conditions. We found a phenomenological approach by taking advantage of the long steady state of cellulose hydrolysis in the open, inhibition-free system. This provided a direct and reliable way to analyze the adsorption and reaction processes with a minimum number of fitting parameters. We investigated a generalized Langmuir-Michaelis-Menten model to describe a full set of kinetic results across a range of enzyme concentrations, compositions, and temperatures. The overall form of the equations describing the pseudo-steady-state kinetics of the flow-system shares some interesting similarities with the Michaelis-Menten equation. The use of familiar Michaelis-Menten parameters in the analysis provides a unifying framework to study cellulase kinetics. The strategy may provide a shortcut for approaching a quantitative while intuitive understanding of enzymatic degradation of cellulose from top to bottom. The open system approach and the kinetic analysis should be applicable to a variety of cellulases and reaction systems to accelerate the progress in the field.
Collapse
Affiliation(s)
- Murali Anuganti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Stephen Ekatan
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Han J, Rong J, Wang Y, Liu Q, Tang X, Li C, Ni L. Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility. Bioprocess Biosyst Eng 2018; 41:1051-1060. [DOI: 10.1007/s00449-018-1934-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/01/2018] [Indexed: 01/18/2023]
|
5
|
Tan L, Tan Z, Feng H, Qiu J. Cellulose as a template to fabricate a cellulase-immobilized composite with high bioactivity and reusability. NEW J CHEM 2018. [DOI: 10.1039/c7nj03271d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new strategy was developed to fabricate an oriented cellulase/chitosan/Fe3O4composite, which possesses extremely high activity, reusability, and stability.
Collapse
Affiliation(s)
- Lin Tan
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- College of Petrochemical Technology
| | - Zhaojun Tan
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou
- P. R. China
| | - Huixia Feng
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- College of Petrochemical Technology
| | - Jianhui Qiu
- Department of Machine Intelligence and Systems Engineering
- Faculty of System Science and Technology
- Akita Prefectural University
- Yurihonjo
- Akita 015-0055
| |
Collapse
|
6
|
Lee CC, Kibblewhite RE, Paavola CD, Orts WJ, Wagschal K. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies. Mol Biotechnol 2017; 58:489-96. [PMID: 27198564 DOI: 10.1007/s12033-016-9945-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes.
Collapse
Affiliation(s)
- Charles C Lee
- Bioproducts Research Unit, USDA-ARS-WRRC, 800 Buchanan St., Albany, CA, 94710, USA.
| | - Rena E Kibblewhite
- Bioproducts Research Unit, USDA-ARS-WRRC, 800 Buchanan St., Albany, CA, 94710, USA
| | - Chad D Paavola
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - William J Orts
- Bioproducts Research Unit, USDA-ARS-WRRC, 800 Buchanan St., Albany, CA, 94710, USA
| | - Kurt Wagschal
- Bioproducts Research Unit, USDA-ARS-WRRC, 800 Buchanan St., Albany, CA, 94710, USA
| |
Collapse
|
7
|
Jiang J, Zhao J, He C, Cui B, Xiong J, Jiang H, Ao J, Xiang G. Recyclable magnetic carboxymethyl chitosan/calcium alginate - cellulase bioconjugates for corn stalk hydrolysis. Carbohydr Polym 2017; 166:358-364. [PMID: 28385243 DOI: 10.1016/j.carbpol.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/20/2022]
Abstract
The use of cellulase hydrolysis of straw to produce fermentable sugars has many application prospects. However, cellulase is very expensive, which hampers its industrial applications. To improve cellulase's catalytic activity and reduce the enzyme cost, magnetite carboxymethyl chitosan/calcium alginate - cellulase bioconjugate (MCCCB) was synthesized via an improved hydrothermal method, molecular self-assembly technology, physical absorption, embedding and covalent bonding. Its loading capacity was 3.95mg/mL, and the catalytic activity increased to 267.18%. We decreased the release rate, improved the reusability, and enhanced the stability of MCCCB. Corn stalk hydrolysis also greatly improved, and the overall yield of fermentable sugars increased by 698.26%. All of these results indicate that MCCCB could significantly improve the efficiency of cellulase, greatly reduce the cost of enzyme, and effectively promote the production of fermentable sugars.
Collapse
Affiliation(s)
- Jianfang Jiang
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563006, PR China.
| | - Jiaqi Zhao
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563006, PR China
| | - Chunyang He
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563006, PR China
| | - Baodong Cui
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563006, PR China
| | - Jun Xiong
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563006, PR China
| | - Hao Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Juan Ao
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563006, PR China
| | - Guangyan Xiang
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou 563006, PR China
| |
Collapse
|
8
|
Kamat RK, Zhang Y, Anuganti M, Ma W, Noshadi I, Fu H, Ekatan S, Parnas R, Wang C, Kumar CV, Lin Y. Enzymatic Activities of Polycatalytic Complexes with Nonprocessive Cellulases Immobilized on the Surface of Magnetic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11573-11579. [PMID: 27797206 DOI: 10.1021/acs.langmuir.6b02573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polycatalytic enzyme complexes made by immobilization of industrial enzymes on polymer- or nanoparticle-based scaffolds are technologically attractive due to their recyclability and their improved substrate binding and catalytic activities. Herein, we report the synthesis of polycatalytic complexes by the immobilization of nonprocessive cellulases on the surface of colloidal polymers with a magnetic nanoparticle core and the study of their binding and catalytic activities. These polycatalytic cellulase complexes have increased binding affinity for the substrate. But due to their larger size, these complexes were unable to access to the internal surfaces of cellulose and have significantly lower binding capacity when compared to those of the corresponding free enzymes. Analysis of released soluble sugars indicated that the formation of complexes may promote the prospect of having consistent, multiple attacks on cellulose substrate. Once bound to the substrate, polycatalytic complexes tend to remain on the surface with very limited mobility due to their strong, multivalent binding to cellulose. Hence, the overall performance of polycatalytic complexes is limited by its substrate accessibility as well as mobility on the substrate surface.
Collapse
Affiliation(s)
| | - Yuting Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | | | - Wanfu Ma
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | | | | | | | | | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | | | | |
Collapse
|
9
|
Jalak J, Väljamäe P. Multi-mode binding of Cellobiohydrolase Cel7A from Trichoderma reesei to cellulose. PLoS One 2014; 9:e108181. [PMID: 25265511 PMCID: PMC4180464 DOI: 10.1371/journal.pone.0108181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/19/2014] [Indexed: 01/26/2023] Open
Abstract
Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with Kd and Amax values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area.
Collapse
Affiliation(s)
- Jürgen Jalak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|