1
|
Wilk-Kozubek M, Potaniec B, Gazińska P, Cybińska J. Exploring the Origins of Low-Temperature Thermochromism in Polydiacetylenes. Polymers (Basel) 2024; 16:2856. [PMID: 39458684 PMCID: PMC11511177 DOI: 10.3390/polym16202856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This review article delves into the intriguing phenomenon of low-temperature thermochromism, whereby materials change color in response to temperature variations, with a particular focus on its applications in temperature-sensitive fields like medical storage. By closely examining thermochromic materials, this article highlights their potential to offer innovative solutions for monitoring and preserving thermolabile products that require strict temperature control. This leads to a special emphasis on polydiacetylenes (PDAs), a class of conjugated polymers with unique low-temperature thermochromic properties, positioning them as promising candidates for reliable temperature indicators. This article then explores the underlying mechanisms for fine-tuning the thermochromic behavior of PDAs, particularly discussing recent advancements in PDA design, such as structural alterations of monomers to achieve low-temperature thermochromism. These modifications, influenced by factors like side-chain length, hydrogen-bonding interactions, and the use of copolymers, are intended to result in irreversible color transitions at specific low temperatures, which is crucial to maintaining the integrity of thermally sensitive products. Finally, this article discusses the potential applications of PDAs as thermochromic sensors in tissue biobanking, where their ability to provide visual indications of temperature fluctuations could significantly enhance the monitoring and management of biological samples.
Collapse
Affiliation(s)
- Magdalena Wilk-Kozubek
- Materials Science and Engineering Center, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland; (M.W.-K.); (B.P.)
| | - Bartłomiej Potaniec
- Materials Science and Engineering Center, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland; (M.W.-K.); (B.P.)
| | - Patrycja Gazińska
- Center for Population Diagnostics, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland;
| | - Joanna Cybińska
- Materials Science and Engineering Center, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland; (M.W.-K.); (B.P.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Sudarshan TR, Lim S, Li J, Robang AS, Liberty LM, Ardoña HAM, Paravastu AK. Cooperative β-sheet coassembly controls intermolecular orientation of amphiphilic peptide-polydiacetylene conjugates. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 133:101959. [PMID: 39213800 DOI: 10.1016/j.ssnmr.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In this work, we elucidated the structural organization of stimuli-responsive peptide-polydiacetylene (PDA) conjugates that can self-assemble as 1D nanostructures under neutral aqueous conditions. The amino acid sequences bear positively or negatively charged domains at the periphery of the peptide segments to promote solubility in water while also driving assembly of the individual and combined components into β-sheets. The photopolymerization of PDA, as well as the sensitivity of the resulting optical properties of the polymeric material to external stimuli, highly depends on the structural organization of the assembly of amphiphilic peptide-diacetylene units into 1D-nanostructures. Solid-state NMR measurements on 13C-labeled and 15N-labeled samples show that positively charged and negatively charged peptide amphiphiles are each capable of self-assembly, but self-assembly favors antiparallel β-sheet structure. When positively and negatively charged peptide amphiphiles interact in stoichiometric solutions, cooperative coassembly dominates over self-assembly, resulting in the desired parallel β-sheet structure with a concomitant increase in structural order. These results reveal that rational placement of oppositely charged residues can control β-strand organization in a peptide amphiphile coassembly, which would have implications on the adaptive properties of stimuli-responsive biomaterials such as the peptide-PDAs studied here.
Collapse
Affiliation(s)
- Tarunya Rao Sudarshan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Sujeung Lim
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA, 92697, United States
| | - Jeffrey Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Leel Mazal Liberty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Herdeline Ann M Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA, 92697, United States; Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA, 92697, United States; Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA, 92697, United States; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, United States.
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, United States.
| |
Collapse
|
3
|
Ono N, Seishima R, Shigeta K, Okabayashi K, Imai H, Fujii S, Oaki Y. High-Sensitive Spatiotemporal Distribution Imaging of Compression Stresses Based on Time-Evolutional Responsiveness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400938. [PMID: 38488737 DOI: 10.1002/smll.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Indexed: 06/13/2024]
Abstract
Mechanoresponsive materials have been studied to visualize and measure stresses in various fields. However, the high-sensitive and spatiotemporal imaging remain a challenging issue. In particular, the time evolutional responsiveness is not easily integrated in mechanoresponsive materials. In the present study, high-sensitive spatiotemporal imaging of weak compression stresses is achieved by time-evolutional controlled diffusion processes using conjugated polymer, capsule, and sponge. Stimuli-responsive polydiacetylene (PDA) is coated inside a sponge. A mechanoresponsive capsule is set on the top face of the sponge. When compression stresses in the range of 6.67-533 kPa are applied to the device, the blue color of PDA is changed to red by the diffusion of the interior liquid containing a guest polymer flowed out of the disrupted capsule. The applied strength (F/N), time (t/s), and impulse (F·t/N s) are visualized and quantified by the red-color intensity. When a guest metal ion is intercalated in the layered structure of PDA to tune the responsivity, the device visualizes the elapsed time (τ/min) after unloading the stresses. PDA, capsule, and sponge play the important roles to achieve the time evolutional responsiveness for the high-sensitive spatiotemporal distribution imaging through the controlled diffusion processes.
Collapse
Affiliation(s)
- Nahoko Ono
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Ryo Seishima
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kohei Shigeta
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
4
|
Mochizuki Y, Imai H, Oaki Y. Imaging of Accumulated Mechanical Stresses Using Self-Assembled Layered Conjugated Polymer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48725-48735. [PMID: 37796640 DOI: 10.1021/acsami.3c12043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
When mechanical stresses, such as tensile, compressive, and frictional stresses, are applied to objects by various motions, they are accumulated in materials. Conventional mechanoresponsive materials and sensors detect one-time applied stress. However, the accumulated stresses are not visualized or measured in previous works. The present study demonstrated imaging and sensing of not only one-time but also accumulated tensile, compressive, and frictional stresses. Polyurethane (PU) film was combined with 2D layered polydiacetylene (PDA), a stimuli-responsive color-changing polymer. PDA generally exhibits no color changes with the application of tensile and compression stresses because the molecular motion leading to the color change is not induced by such mechanical stresses. Here the versatile mechanoresponsiveness was achieved using a block copolymer guest partially intercalated in the layered PDA. As the interlayer and outerlayer segments interact with PDA and PU, respectively, the applied stresses to the film are transferred from PU to PDA via the block copolymer guest. The color changes of the film imaged and quantified the accumulated work depending on the number and strength of the applied multiple stresses such as tensile, compressive, and frictional stresses. The design strategy of materials and methodology of sensing can be applied to the development of new sensors for accumulated mechanical stresses in a wide range of length and strength scales.
Collapse
Affiliation(s)
- Yuki Mochizuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
5
|
Lim S, Cordova DLM, Robang AS, Kuang Y, Ogura KS, Paravastu AK, Arguilla MQ, Ardoña HAM. Thermochromic Behavior of Polydiacetylene Nanomaterials Driven by Charged Peptide Amphiphiles. Biomacromolecules 2023; 24:4051-4063. [PMID: 37552220 PMCID: PMC10498447 DOI: 10.1021/acs.biomac.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Indexed: 08/09/2023]
Abstract
The tunability of chromatic phases adapted by chromogenic polymers such as polydiacetylene (PDA) is key to their utility for robust sensing applications. Here, we investigated the influence of charged peptide interactions on the structure-dependent thermochromicity of amphiphilic PDAs. Solid-state NMR and circular dichroism analyses show that our oppositely charged peptide-PDA samples have distinct degrees of structural order, with the coassembled sample being in between the β-sheet-like positive peptide-PDA and the relatively disordered negative peptide-PDA. All solutions exhibit thermochromicity between 20 and 80 °C, whereby the hysteresis of the blue, planar phase is much larger than that of the red, twisted phase. Resonance Raman spectroscopy of films demonstrates that only coassemblies with electrostatic complementarity stabilize coexisting blue and red PDA phases. This work reveals the nature of the structural changes responsible for the thermally responsive chromatic transitions of biomolecule-functionalized polymeric materials and how this process can be directed by sequence-dictated electrostatic interactions.
Collapse
Affiliation(s)
- Sujeung Lim
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Dmitri Leo M. Cordova
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, California 92697, United States
| | - Alicia S. Robang
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yuyao Kuang
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Kaleolani S. Ogura
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, California 92697, United States
| | - Anant K. Paravastu
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maxx Q. Arguilla
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, California 92697, United States
| | - Herdeline Ann M. Ardoña
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, California 92697, United States
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, California 92697, United States
- Department
of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, California 92697, United States
- Sue
& Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Ge M, He Z, Song Z. Polydiacetylene/organic magadiite nanocomposite film with stable reversible structure and reversible thermochromism. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Seo D, Ansari R, Lee K, Kieffer J, Kim J. Amplifying the Sensitivity of Polydiacetylene Sensors: The Dummy Molecule Approach. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14561-14567. [PMID: 35293721 DOI: 10.1021/acsami.1c25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an increasing need for fast and accurate assessment of various health conditions, where polydiacetylenes (PDA), having unique stress-sensitive optical properties, have great potential. When the conjugated backbone of PDA is disturbed by steric repulsion between the receptor-target complexes formed at the PDA surface via specific recognition events, the bandgap of PDA increases and produces color change and fluorescent emission as a dual sensory signal. However, this detection mechanism suggests an intrinsic sensitivity limit of PDA platform because unless adjacent receptors are occupied by target molecules no signal is anticipated. A novel approach to improve the sensitivity and limit of detection of PDA sensors has been developed by preoccupying the surface of PDA liposomes with an optimized amount of artificial target molecules named as dummy molecules. The sensitivity and limit of detection (LOD) showed large improvement by the surface-bound dummy molecules. In addition, the dummy strategy was synergically integrated with another sensitivity enhancing method with a different working mechanism in a PDA sensor for Neomycin detection. When optimized, the LOD of the PDA sensor was improved to 7 nM from 80 nM of the control and the signal intensity increased consistently throughout the entire tested concentration range of the target Neomycin. Finally, the general applicability of the dummy strategy to other target molecules was successfully confirmed by implementing the dummy strategy in a PDA sensor for Surfactin detection.
Collapse
Affiliation(s)
- Deokwon Seo
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ramin Ansari
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - John Kieffer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinsang Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Seo D, Major TC, Kang DH, Seo S, Lee K, Bartlett RH, Kim J. Polydiacetylene Liposome Microarray toward Facile Measurement of Platelet Activation in Whole Blood. ACS Sens 2021; 6:3170-3175. [PMID: 34291908 DOI: 10.1021/acssensors.1c01167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The necessity of a simple measurement of platelet activation has been increasing in clinical medicine to regulate the proper dose of the antiplatelet drugs for patients having clinical outcomes in acute situations such as angina pectoris, stroke, or peripheral vascular disease or procedures involving angioplasty or coronary thrombolysis. We developed a self-signaling polydiacetylene (PDA) liposome microarray to detect activated platelets from whole blood samples in a single step. A specific antibody, 9F9 antibody, to platelet-bound fibrinogen was selected and conjugated to the PDA liposome microarray to quantify the fibrinogen-bound platelets. The developed PDA liposome-9F9 microarray generated an intense fluorescence signal when activated platelets in whole blood were introduced and also successfully distinguished the reduced platelet activation in the presence of Tirofiban, a model antiplatelet drug. The results of this single-step benchtop assay incorporates simple, sensitive, and rapid attributes that can detect the extent of platelet activation prior to needed clinical procedures.
Collapse
Affiliation(s)
- Deokwon Seo
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Terry C. Major
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Do Hyun Kang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sungbaek Seo
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Robert H. Bartlett
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jinsang Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Ortega PFR, Galvão BRL, de Oliveira PSC, Bastos GAA, Bernardes MRF, Lavall RL, Trigueiro JPC. Thermochromism in Polydiacetylene/Poly(vinyl alcohol) Hydrogels Obtained by the Freeze–Thaw Method: A Theoretical and Experimental Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paulo F. R. Ortega
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas, 5253-Nova Suíça, CEP 30421-5169 Belo Horizonte, Minas Gerais, Brazil
| | - Breno R. L. Galvão
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas, 5253-Nova Suíça, CEP 30421-5169 Belo Horizonte, Minas Gerais, Brazil
| | - Pedro S. C. de Oliveira
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Grasielli A. A. Bastos
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Matheus R. F. Bernardes
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo L. Lavall
- Departamento de Química/ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - João P. C. Trigueiro
- Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais—Campus Betim, Rua Itaguaçu, 595, São Caetano, CEP 32677-562 Betim, Minas Gerais, Brazil
| |
Collapse
|
10
|
Nakamitsu M, Oyama K, Imai H, Fujii S, Oaki Y. Ultrahigh-Sensitive Compression-Stress Sensor Using Integrated Stimuli-Responsive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008755. [PMID: 33615567 DOI: 10.1002/adma.202008755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Measurement of mechanical stresses, such as compression, shear, and tensile stresses, contributes toward achieving a safer and healthier life. In particular, the detection of weak compression stresses is required for healthcare monitoring and biomedical applications. Compression stresses in the order of 106 -1010 Pa have been visualized and/or quantified using mechano-responsive materials in previous works. However, in general, it is not easy to detect compression stresses weaker than 103 Pa using conventional mechano-responsive materials because the dynamic motion of the rigid mechano-responsive molecules is not induced by such a weak stress. In the present work, weak compression stresses in the order of 100 -103 Pa are visualized and measured via the integration of stimuli-responsive materials, such as layered polydiacetylene (PDA) and dry liquid (DL), through response cascades. DLs consisting of liquid droplets covered by solid particles release the interior liquid and collapse with application of a weak compression stress. The color of the layered PDA is changed by the spilled liquid as a chemical stress. A variety of weak compression stresses, such as expiratory pressure, are visualized and colorimetrically measured using the paper-based device of the integrated stimuli-responsive materials. Diverse mechano-sensing devices can be designed via the integration of stimuli-responsive materials.
Collapse
Affiliation(s)
- Minami Nakamitsu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Keigo Oyama
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
11
|
Juhasz L, Ortuso RD, Sugihara K. Quantitative and Anisotropic Mechanochromism of Polydiacetylene at Nanoscale. NANO LETTERS 2021; 21:543-549. [PMID: 33284635 DOI: 10.1021/acs.nanolett.0c04027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantitative and anisotropic mechanochromism of polydiacetylene over nanoscale distances remains unaddressed even after 50 years of extensive research. This is because its anisotropic structure on substrates necessitates the application of both vertical and lateral forces (shear forces) to characterize it, whereas atomic force microscopy, which is the usual technique used to investigate nanoscale forces, is only capable of quantifying vertical forces. In this study, we address this lacuna by utilizing quantitative friction force microscopy that measures lateral forces. Our data confirm that polydiacetylene reacts only to lateral forces, F//, and disprove the previously claimed hypothesis that the edges of the polymer crystals exhibit higher force sensitivity than the rest of the crystal. In addition, we report a correlation between mechanochromism and thermochromism, which can be attributed to the fact that both work and heat are different means of providing the same transition energy.
Collapse
Affiliation(s)
- Levente Juhasz
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Roberto D Ortuso
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
12
|
Oaki Y. Intercalation and flexibility chemistries of soft layered materials. Chem Commun (Camb) 2020; 56:13069-13081. [PMID: 33021619 DOI: 10.1039/d0cc05931e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Layered materials, alternate stackings of two or more components, are found in a wide range of scales. Chemists can design and synthesize layered structures containing functional units. The soft-type layered materials exhibit characteristic dynamic functions originating from two-dimensional (2D) anisotropy and structure flexibility. This feature article focuses on "intercalation" and "flexibility" as two new perspectives for designing soft layered materials. Intercalation of guests is a characteristic approach for design of layered structures. Flexibility is an important factor to control the dynamic functions of the layered structures. As a model case, the intercalation-induced tunable stimuli-responsive color-change properties of layered polydiacetylene (PDA) are introduced to study the impact of the intercalation and flexibility on the dynamic functions. Recently, layered materials have drastically expanded the research area from conventional rigid inorganic compounds to new self-assembled nanostructures consisting of organic components, such as polymers, metal-organic frameworks, and covalent-organic frameworks. These new layered architectures have potentials for exhibiting dynamic functions originating from the structure flexibility beyond the static properties originating from classical intercalation and host-guest chemistries. Therefore, intercalation and flexibility chemistries of soft layered materials are regarded as new perspectives for design of advanced dynamic functional materials.
Collapse
Affiliation(s)
- Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
13
|
Watanabe K, Imai H, Oaki Y. Solid-State Low-Temperature Thermoresponsive and Reversible Color Changes of Conjugated Polymer in Layered Structure: Beyond Infrared Thermography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004586. [PMID: 32939961 DOI: 10.1002/smll.202004586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Emergence of thermoresponsive and reversible color changes at low temperature is a challenging target. In general, it is not easy to induce sufficient dynamic motion of rigid molecules including chromophore at a lower temperature. The present work shows unusually low-temperature color-change properties originating from the dynamic motion of rigid conjugated polymer in solid state. The layered composites of polydiacetylene (PDA) and guest l-arginine (L-Arg) (PDA-(L-Arg)) exhibit temperature-responsive gradual color changes with reversibility in the range of 123-333 K in solid crystalline state. The dynamic properties are induced by gradual and reversible distortion of the π-conjugated main chain in response to temperature. The tuned flexibility of the layered structure facilitates motion of the rigid π-conjugated molecule at low temperature. The PDA-(L-Arg)-coated substrates are applied to visualization and quantification of 2D and 3D temperature distributions generated by cooling with liquid nitrogen. These thermographic devices afford to image lower temperature range than typical infrared thermography. The present work indicates potentials of layered architectures with tunable flexibility for emergence of dynamic properties.
Collapse
Affiliation(s)
- Kei Watanabe
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
14
|
Oh J, Eom MS, Han MS. Co-functionalization with phosphate and carboxylate on polydiacetylene for colorimetric detection of calcium ions in serum. Analyst 2020; 144:7064-7070. [PMID: 31660545 DOI: 10.1039/c9an00855a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, co-functionalization with phosphate and carboxylate on polydiacetylene (PDA) was proposed to detect calcium ions in serum, inspired by biologically abundant phosphate-calcium ion and carboxylate-calcium ion binding. The cooperative interaction of calcium ions with phosphate and carboxylate in PDA induced the change of electronic properties in the backbone without aggregation of liposomes, accompanied by blue-to-purple color transition. The cooperative effect through the introduction of mixed ligands facilitated the selective detection of calcium ions over magnesium ions, which was a source of major interference in many calcium ion probes, and in the presence of major serum metal ions. The sensor system exhibited highly sensitive detection of calcium ions with an estimated limit of detection of 0.97 μM. In addition, the detection method was employed to determine the concentration of calcium ions in various serums.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | | | | |
Collapse
|
15
|
Zhang Z, Wang F, Chen X. Recent advances in the development of polydiacetylene-based biosensors. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Jeong J, Min KS, Kumar RS, Mergu N, Son YA. Synthesis of novel betaine dyes for multi chromic sensors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Xu Y, Yuan T, Nour HF, Fang L, Olson MA. Bis‐Bipyridinium Gemini Surfactant‐Based Supramolecular Helical Fibers and Solid State Thermochromism. Chemistry 2018; 24:16558-16569. [DOI: 10.1002/chem.201803496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Nankai District Tianjin 300072 P.R. China
| | - Tianyu Yuan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Nankai District Tianjin 300072 P.R. China
- Department of Chemistry Texas A&M University 3255, TAMU College Station TX 77840 USA
| | - Hany F. Nour
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Nankai District Tianjin 300072 P.R. China
- National Research Centre Chemical Industries Research Division, Department of Photochemistry 33 El Buhouth Street, P.O. Box 12622 Giza Egypt
| | - Lei Fang
- Department of Chemistry Texas A&M University 3255, TAMU College Station TX 77840 USA
| | - Mark A. Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Nankai District Tianjin 300072 P.R. China
| |
Collapse
|
18
|
Khanantong C, Charoenthai N, Phuangkaew T, Kielar F, Traiphol N, Traiphol R. Phase transition, structure and color-transition behaviors of monocarboxylic diacetylene and polydiacetylene assemblies: The opposite effects of alkyl chain length. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Kim MJ, Angupillai S, Min K, Ramalingam M, Son YA. Tuning of the Topochemical Polymerization of Diacetylenes Based on an Odd/Even Effect of the Peripheral Alkyl Chain: Thermochromic Reversibility in a Thin Film and a Single-Component Ink for a Fountain Pen. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24767-24775. [PMID: 29956908 DOI: 10.1021/acsami.8b05896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The topochemical polymerization of diacetylenes (DAs) is closely related to the length of their alkyl chain. DA monomers have two types of alkyl chain side groups: the inner alkyl chain and the outer alkyl chain, that is, the peripheral alkyl chain. Herein, we designed and synthesized a series of DA monomers that possess bis-amide linkages with different peripheral alkyl chains ( n = 6-9; DA1-DA4). The peripheral alkyl chain length of these DA monomers exhibits an odd/even effect on topochemical polymerization. The polymerization of DAs was achieved only when n is an odd number, whereas no polymerization occurred when n is an even number. The odd/even effect on the topochemical polymerization was also investigated using ab initio density functional theory calculations. The thermochromic reversibility of polydiacetylenes (PDAs) was investigated using UV-vis absorption spectroscopy at temperatures ranging from 20 to 60 °C. Monomer DA2 was used as a single-component ink solution in a fountain pen that can be transformed into thermochromic letters on conventional paper. Furthermore, a PDA-embedded polyethylene oxide film was included to monitor the thermochromic reversibility and was found to exhibit excellent thermochromic reversibility between 20 and 100 °C and stability, enabling storage for a few months without deformation. Finally, a green-colored patterned polymer film is readily obtained by a subtractive color (blue and yellow) mixing method and exhibits high thermochromic reversibility at temperatures between 20 and 100 °C.
Collapse
Affiliation(s)
- Myeong Jin Kim
- Department of Advanced Organic Materials Engineering , Chungnam National University , 220 Gung-dong , Yuseong-gu, Daejeon 305-764 , South Korea
| | - Satheshkumar Angupillai
- Department of Advanced Organic Materials Engineering , Chungnam National University , 220 Gung-dong , Yuseong-gu, Daejeon 305-764 , South Korea
| | - Kyeongsu Min
- Department of Advanced Organic Materials Engineering , Chungnam National University , 220 Gung-dong , Yuseong-gu, Daejeon 305-764 , South Korea
| | - Manivannan Ramalingam
- Department of Advanced Organic Materials Engineering , Chungnam National University , 220 Gung-dong , Yuseong-gu, Daejeon 305-764 , South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering , Chungnam National University , 220 Gung-dong , Yuseong-gu, Daejeon 305-764 , South Korea
| |
Collapse
|
20
|
Terada H, Imai H, Oaki Y. Visualization and Quantitative Detection of Friction Force by Self-Organized Organic Layered Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801121. [PMID: 29775505 DOI: 10.1002/adma.201801121] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Visualization and quantitative detection of external stimuli are significant challenges in materials science. Quantitative detection of friction force, a mechanical stress, is not easily achieved using conventional stimuli-responsive materials. Here, the quantitative detection of friction force is reported, such as the strength and accumulated ammount, from the visible color of organic layered composites consisting of polydiacetylene (PDA) and organic amines without an excitation light source. The composites of the layered diacetylene monomer crystal and interlayer organic amine are synthesized through self-organization from the precursor solution. After topochemical polymerization, the layered composites based on PDA show tunable temperature-responsive and mechanoresponsive color-change properties depending on the types of interlayer amines. The layered composites are homogeneously coated on a filter paper. The change in color of the paper is quantitatively used to visualize the strength and accumulated amount of the applied friction force. Furthermore, writing pressure is measured by friction force using the paper device.
Collapse
Affiliation(s)
- Hideto Terada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
21
|
Soliman YS, Abdel-Fattah A, Hamed A, Bayomi A. A radiation-sensitive monomer of 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) in PVA as a radiochromic film dosimeter. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Influences of solvent media on chain organization and thermochromic behaviors of polydiacetylene assemblies prepared from monomer with symmetric alkyl tails. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Emergence of temperature-dependent and reversible color-changing properties by the stabilization of layered polydiacetylene through intercalation. Polym J 2018. [DOI: 10.1038/s41428-017-0018-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Oh J, Kang S, Lee CG, Han MS. A colorimetric chemosensor for heptanal with selectivity over formaldehyde and acetaldehyde through synergistic interaction of hydrophobic interactions and oxime formation. Analyst 2018; 143:4592-4599. [DOI: 10.1039/c8an01238e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxylamine-functionalized polydiacetylene was evaluated as a heptanal chemosensor with selectivity over formaldehyde and acetaldehyde.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Seungyoon Kang
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Cheol Gyu Lee
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Min Su Han
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
25
|
Kang DH, Kim K, Son Y, Chang PS, Kim J, Jung HS. Design of a simple paper-based colorimetric biosensor using polydiacetylene liposomes for neomycin detection. Analyst 2018; 143:4623-4629. [DOI: 10.1039/c8an01097h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A paper-based analytical device (μPAD) combined with self-signaling polydiacetylene liposomes was developed for convenient visual neomycin detection.
Collapse
Affiliation(s)
- Do Hyun Kang
- Materials Science and Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Keesung Kim
- Research Institute of Advanced Materials
- College of Engineering
- Seoul National University
- South Korea
| | - Younghwan Son
- Department of Rural Systems Engineering and Research Institute for Agriculture & Life Sciences
- Seoul National University
- Seoul
- South Korea
| | - Pahn-Shick Chang
- Center for Food and Bioconvergence
- Department of Food Science and Biotechnology
- Seoul National University. Seoul
- South Korea
| | - Jinsang Kim
- Materials Science and Engineering
- University of Michigan
- Ann Arbor
- USA
- Macromolecular Science and Engineering
| | - Ho-Sup Jung
- Center for Food and Bioconvergence
- Department of Food Science and Biotechnology
- Seoul National University. Seoul
- South Korea
| |
Collapse
|
26
|
Kang DH, Jung HS, Kim K, Kim J. Mussel-Inspired Universal Bioconjugation of Polydiacetylene Liposome for Droplet-Array Biosensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42210-42216. [PMID: 29111663 DOI: 10.1021/acsami.7b14086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most solid-state biosensor platforms require a specific immobilization chemistry and a bioconjugation strategy separately to tether sensory molecules to a substrate and attach specific receptors to the sensory unit, respectively. We developed a mussel-inspired universal conjugation method that enables both surface immobilization and bioconjugation at the same time. By incorporating dopamine or catechol moiety into self-signaling polydiacetylene (PDA) liposomes, we demonstrated efficient immobilization of the PDA liposomes to a wide range of substrates, without any substrate modification. Moreover, receptor molecules having a specificity toward a target molecule can also be attached to the immobilized PDA liposome layer without any chemical modification. We applied our mussel-inspired conjugation method to a droplet-array biosensor by exploiting the hydrophilic nature of PDA liposomes coated on a hydrophobic polytetrafluoroethylene surface and demonstrated selective and sensitive detection of vascular endothelial growth factor down to 10 nM.
Collapse
Affiliation(s)
- Do Hyun Kang
- Materials Science and Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| | | | | | - Jinsang Kim
- Materials Science and Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
- Macromolecular Science and Engineering, Chemical Engineering, Biomedical Engineering, Chemistry, and Biointerface Institute, University of Michigan , Ann Arbor 48109, United States
| |
Collapse
|
27
|
Yapor J, Alharby A, Gentry-Weeks C, Reynolds MM, Alam AKMM, Li YV. Polydiacetylene Nanofiber Composites as a Colorimetric Sensor Responding To Escherichia coli and pH. ACS OMEGA 2017; 2:7334-7342. [PMID: 30023547 PMCID: PMC6045378 DOI: 10.1021/acsomega.7b01136] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/11/2017] [Indexed: 05/22/2023]
Abstract
Polydiacetylenes (PDAs) are conjugative polymers that demonstrate color changes as a response to an external stimulus. In this study, 10,12-pentacosadiynoic acid (PCDA) was mixed with a supporting polymer including poly(ethylene oxide) (PEO) and polyurethane (PU), and the mixture solution was electrospun to construct fiber composites. The electrospun fibers were then photopolymerized using UV irradiation to produce PEO-PDA and PU-PDA nanofiber mats with a fiber diameter ranging from 130 nm to 2.5 μm. The morphologies of both PEO-PDA and PU-PDA nanofibers were dependent on electrospinning parameters such as the ratio of PCDA to PEO or PCDA to PU and the total polymer concentrations. Scanning electron microscopy images showed beaded fibers of PEO-PDA and PU-PDA at 2 and 18 w/v % concentrations, respectively. Smooth fibers were found when the solvent concentration was increased to 3.75 w/v % in PEO-PDA and 25 w/v % in PU-PDA fibers. Both PEO-PDA and PU-PDA nanofiber composites demonstrated excellent colorimetric responses to the presence of Escherichia coli ATCC25922 bacterial cells and the changes in pH as external stimuli. The nanofibers underwent a rapid colorimetric response when exposed directly to E. coli ATCC25922 grown on Luria-Bertani agar. The comparison between the PEO-PDA and PU-PDA suggested that the combination of PEO and PDA is favorable because it provides a sensitive response to the presence of E. coli. The results were compared with samples of a PDA polymer in the absence of a matrix polymer. The colorimetric response was similar when the PDA polymer and the PDA nanofiber composites were exposed to pH changes, and the color change was found to occur at pH 10 and enhanced at pH 11-13. The PDA-containing nanofiber composites showed stronger colorimetric responses than those of the PDA polymer only, suggesting their potential as biosensors and chemosensors.
Collapse
Affiliation(s)
- Janet
P. Yapor
- Department
of Chemistry, Department of Design and Merchandising, Department of Microbiology,
Immunology and Pathology, and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Abeer Alharby
- Department
of Chemistry, Department of Design and Merchandising, Department of Microbiology,
Immunology and Pathology, and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Claudia Gentry-Weeks
- Department
of Chemistry, Department of Design and Merchandising, Department of Microbiology,
Immunology and Pathology, and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department
of Chemistry, Department of Design and Merchandising, Department of Microbiology,
Immunology and Pathology, and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - A. K. M. Mashud Alam
- Department
of Chemistry, Department of Design and Merchandising, Department of Microbiology,
Immunology and Pathology, and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yan Vivian Li
- Department
of Chemistry, Department of Design and Merchandising, Department of Microbiology,
Immunology and Pathology, and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Jordan RS, Li YL, Lin CW, McCurdy RD, Lin JB, Brosmer JL, Marsh KL, Khan SI, Houk KN, Kaner RB, Rubin Y. Synthesis of N = 8 Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. J Am Chem Soc 2017; 139:15878-15890. [DOI: 10.1021/jacs.7b08800] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert S. Jordan
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Yolanda L. Li
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Cheng-Wei Lin
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Ryan D. McCurdy
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Janice B. Lin
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Jonathan L. Brosmer
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Kristofer L. Marsh
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Saeed I. Khan
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - K. N. Houk
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Richard B. Kaner
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Yves Rubin
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| |
Collapse
|
29
|
Ishijima Y, Imai H, Oaki Y. Tunable Mechano-responsive Color-Change Properties of Organic Layered Material by Intercalation. Chem 2017. [DOI: 10.1016/j.chempr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Kim DY, Lee SA, Jung D, Koo J, Soo Kim J, Yu YT, Lee CR, Jeong KU. Topochemical polymerization of dumbbell-shaped diacetylene monomers: relationship between chemical structure, molecular packing structure, and gelation property. SOFT MATTER 2017; 13:5759-5766. [PMID: 28761944 DOI: 10.1039/c7sm01166k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we have synthesized novel photopolymerizable dumbbell-shaped diacetylene liquid crystal (LC) monomers by locating a diacetylene dicarboxylic acid group at the center and chemically connecting swallow-tails, such as hydrophobic alkyl chains (abbreviated as AT3DI) and amphiphilic biphenyl mesogens (abbreviated as BP3DI), with bisamide groups. Major phase transitions of dumbbell-shaped diacetylene monomers were identified using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and Fourier transform infrared spectroscopy (FT IR). Molecular packing structures were studied based on structure-sensitive wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) analyses. Mainly, due to nanophase separations and strong intermolecular hydrogen bonding, AT3DI formed a low-ordered lamellar LC phase at room temperature. BP3DI self-assembled into highly-ordered crystal phases (K1 and K2) at lower temperatures below a low-ordered lamellar LC phase, in which BP3DI were intercalated with each other to compensate the mutual volume differences. From the photopolymerization of AT3DI and BP3DI, it was realized that the topochemical reactions of dumbbell-shaped diacetylene monomers were closely related to their chemical structures as well as molecular packing structures.
Collapse
Affiliation(s)
- Dae-Yoon Kim
- BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju 54896, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kamphan A, Gong C, Maiti K, Sur S, Traiphol R, Arya DP. Utilization of chromic polydiacetylene assemblies as a platform to probe specific binding between drug and RNA. RSC Adv 2017; 7:41435-41443. [PMID: 29276583 PMCID: PMC5739335 DOI: 10.1039/c7ra07178g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recognition of nucleic acids remains an important endeavor in biology. Nucleic acids adopt shapes ranging from A-form (RNA and GC rich DNA) to B-form (AT rich DNA). We show, in this contribution, shape-specific recognition of A-U rich RNA duplex by a neomycin (Neo)-polydiacetylene (PDA) complex. PDA assemblies are fabricated by using a well-known diacetylene (DA) monomer, 10,12-pentacosadiynoic acid (PCDA). The response of poly(PCDA) assemblies is generated by mixing with a modified neomycin-PCDA monomer (Neo-PCDA). The functionalization by neomycin moiety provides specific binding with homopolyribonucleotide poly (rA) - poly (rU) stimulus. Various types of alcohols are utilized as additives to enhance the sensitivity of poly(PCDA)/Neo-PCDA assemblies. A change of absorption spectra is clearly observed when a relatively low concentration of poly (rA)-poly (rU) is added into the system. Furthermore, poly(PCDA)/Neo-PCDA shows a clear specificity for poly (rA)-poly (rU) over the corresponding DNA duplex. The variation of linker between neomycin moiety and conjugated PDA backbone is found to significantly affect its sensitivity. We also investigate other parameters including the concentration of Neo-PCDA and the DA monomer structure. Our results provide here preliminary data for an alternative approach to improve the sensitivity of PDA utilized in biosensing and diagnostic applications.
Collapse
Affiliation(s)
- Anothai Kamphan
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Laboratory of Advanced Polymers and Nanomaterials, School of Materials Science and Engineering and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Changjun Gong
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Krishnagopal Maiti
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Souvik Sur
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Rakchart Traiphol
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Laboratory of Advanced Polymers and Nanomaterials, School of Materials Science and Engineering and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- NANOTEC-MU Excellence Center on Intelligent Materials and Systems, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400,Thailand
| | - Dev P. Arya
- Laboratories of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
32
|
Oaki Y. Morphology Design of Crystalline and Polymer Materials from Nanoscopic to Macroscopic Scales. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170098] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| |
Collapse
|
33
|
Meng Y, Jiang J, Liu M. Self-assembled nanohelix from a bolaamphiphilic diacetylene via hydrogelation and selective responsiveness towards amino acids and nucleobases. NANOSCALE 2017; 9:7199-7206. [PMID: 28513697 DOI: 10.1039/c7nr02126g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A bolaamphiphile with diacteylene mesogen unit and l-glutamic acid as the terminal group was newly designed and its self-assembly was investigated. The compound formed hydrogels with water upon heating and cooling. The as-formed gel could be switched to a dispersion upon mechanical shaking. Both the gel and the water dispersion undergo polymerization upon UV irradiation. However, the gel turned to blue and then purple red color, while the dispersion turned red directly. Using AFM and SEM observations, it was found that nanohelix was formed in the as-prepared gel and polymerized blue gels, while nanobelt was formed from the water dispersion. The blue nanohelix was stable but showed selective response to certain amino acids and nucleobases. It was found that the blue gel underwent shrinkage when reacting with charged amino acids such as Glu, Asp, Lys, Arg and His. In the shrunk gel, the solution phase further turned pink in the case of His and Arg. In addition, the blue gel showed also shrinkage and color change when reacting with cytosine.
Collapse
Affiliation(s)
- Yan Meng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface, Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China.
| | | | | |
Collapse
|
34
|
Takeuchi M, Imai H, Oaki Y. Real-Time Imaging of 2D and 3D Temperature Distribution: Coating of Metal-Ion-Intercalated Organic Layered Composites with Tunable Stimuli-Responsive Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16546-16552. [PMID: 28448112 DOI: 10.1021/acsami.7b03567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organic layered materials have intercalation and dynamic properties. The dynamic properties are tuned by the intercalation of the guests. In general, however, it is not easy to achieve the homogeneous and thin coating of the layered materials on substrates with complex shapes because of the two-dimensional anisotropic structures. In the present work, the layered organic composites were homogeneously coated on a variety of substrates for application to practical devices. The metal-ion-intercalated layered polydiacetylene (PDA-Mn+) with tunable stimuli-responsive color-change properties was coated on substrates, such as paper and cotton consisting of cellulose fibers. The homogeneous and thin coating of the precursor monomer crystal was achieved on the substrates through the controlled crystal growth. The intercalation and topochemical polymerization generated PDA-Mn+ on the substrates. The PDA-Mn+-coated devices visualized temperature distribution of two-dimensional surface and three-dimensional space in real time.
Collapse
Affiliation(s)
- Machi Takeuchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
35
|
Han N, Woo HJ, Kim SE, Jung S, Shin MJ, Kim M, Shin JS. Systemized organic functional group controls in polydiacetylenes and their effects on color changes. J Appl Polym Sci 2017. [DOI: 10.1002/app.45011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Narae Han
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk 28644 Republic of Korea
- Research Team for Synthesis and Physical Properties of Various Molecules (BK21Plus); Chungbuk National University
| | - Hyeon Ji Woo
- Department of Oriental Cosmetic Science; Semyung University; Jecheon Chungbuk 27136 Republic of Korea
| | - Se Eun Kim
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk 28644 Republic of Korea
- Research Team for Synthesis and Physical Properties of Various Molecules (BK21Plus); Chungbuk National University
| | - Suyeon Jung
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk 28644 Republic of Korea
| | - Min Jae Shin
- School of Integrated Oriental Medical Bioscience; Semyung University; Jecheon Chungbuk 27136 Republic of Korea
| | - Min Kim
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk 28644 Republic of Korea
- Research Team for Synthesis and Physical Properties of Various Molecules (BK21Plus); Chungbuk National University
| | - Jae Sup Shin
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk 28644 Republic of Korea
| |
Collapse
|
36
|
Lee S, Kim JY, Chen X, Yoon J. Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets. Chem Commun (Camb) 2016; 52:9178-96. [PMID: 27314281 DOI: 10.1039/c6cc03584a] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polydiacetylenes (PDAs) have received increasing attention as smart materials owing to their unique properties. Upon addition of various stimuli, blue PDAs can undergo a colorimetric transition from blue to red along with a change from non-fluorescent to fluorescent. The optical changes can be readily detected by the naked eye and by using absorption and fluorescence spectrometers. These properties make PDAs excellent materials for use in platforms for sensing chemical or biological targets. In recent years, a number of biosensors and chemosensors based on the optical responses of polydiacetylenes have been reported. In this review, recent advances made in this area were discussed following a format based on different cognizing targets, including temperature, metal ions, anions, surfactants, amines, water, gas, sugars, hydrocarbons, neomycin, heparin, virus, enzymes, bacteria, and cancers. Emphasis is given to the methods used to prepare PDA sensing systems as well as their sensing performance.
Collapse
Affiliation(s)
- Songyi Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.
| | | | | | | |
Collapse
|
37
|
Kamphan A, Traiphol N, Traiphol R. Versatile route to prepare reversible thermochromic polydiacetylene nanocomposite using low molecular weight poly(vinylpyrrolidone). Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Tanphibal P, Tashiro K, Chirachanchai S. Constructing π-Electron-Conjugated Diarylbutadiyne-Based Polydiacetylene under Molecular Framework Controlled by Hydrogen Bond and Side-Chain Substituent Position. Macromol Rapid Commun 2016; 37:685-90. [DOI: 10.1002/marc.201500690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/22/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Pimsai Tanphibal
- The Petroleum and Petrochemical College; Chulalongkorn University; Bangkok 10330 Thailand
| | - Kohji Tashiro
- Department of Future Industry-oriented Basic Science and Materials; Toyota Technological Institute; Tempaku, Nagoya 468-8511 Japan
| | - Suwabun Chirachanchai
- The Petroleum and Petrochemical College; Chulalongkorn University; Bangkok 10330 Thailand
- Center for Petroleum and Petrochemical, and Advanced Materials; Chulalongkorn University; Bangkok 10330 Thailand
| |
Collapse
|
39
|
Park IS, Park HJ, Jeong W, Nam J, Kang Y, Shin K, Chung H, Kim JM. Low Temperature Thermochromic Polydiacetylenes: Design, Colorimetric Properties, and Nanofiber Formation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02683] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- In Sung Park
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Hye Jin Park
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Woomin Jeong
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Jihye Nam
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Youngjong Kang
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Kayeong Shin
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Hoeil Chung
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, ‡Department of Chemistry, and §Institute of Nano
Science and Technology, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
40
|
Fine tuning the colorimetric response to thermal and chemical stimuli of polydiacetylene vesicles by using various alcohols as additives. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Wang S, Li Y, Liu H, Li J, Li T, Wu Y, Okada S, Nakanishi H. Topochemical polymerization of unsymmetrical aryldiacetylene supramolecules with nitrophenyl substituents utilizing C-H∙∙∙π interactions. Org Biomol Chem 2015; 13:5467-74. [PMID: 25875321 DOI: 10.1039/c5ob00435g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diacetylenes are versatile building blocks, in which many functional groups can be incorporated for the construction of new materials with desirable properties. In this study, 6-(p or m-nitrophenyl)-3,5-hexadiyne-1-ol (4a or 4b) containing nitrophenyl groups (host) and 2-hydroxyethyl groups (guest) in different diacetylene terminals were designed to establish an ordered supramolecular assembly that is complied with the strict requirements for the topochemical polymerization of diacetylenes. Crystal film and bulk crystals of compound 4b were obtained successfully by cast film and re-precipitation methods. Both of these could photopolymerize to the corresponding regular poly(diacetylene) polymer, as evidenced by UV-vis, IR, FL and Raman spectroscopy. The electrochemical properties and behaviors of 4a and 4b were also investigated, and the results show that the differences between the para and meta positions of the mono-phenylacetylene substituents probably result from the topochemical polymerization. Thus, m-nitrophenylbutadiyne derivatives with sizeable C-H∙∙∙π interactions seemed to be effective for the formation of a polymerizable packing, which is appropriate for topochemical polymerization.
Collapse
Affiliation(s)
- Shichao Wang
- College of Chemistry and Molecular Engineering, The Key Lab of Advanced Information Materials of Zhengzhou, Zhengzhou University, Kexuedadao100, Zhengzhou 450052, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Traiphol N, Faisadcha K, Potai R, Traiphol R. Fine tuning the color-transition temperature of thermoreversible polydiacetylene/zinc oxide nanocomposites: The effect of photopolymerization time. J Colloid Interface Sci 2015; 439:105-11. [DOI: 10.1016/j.jcis.2014.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 01/09/2023]
|
43
|
Carlotti M, Gullo G, Battisti A, Martini F, Borsacchi S, Geppi M, Ruggeri G, Pucci A. Thermochromic polyethylene films doped with perylene chromophores: experimental evidence and methods for characterization of their phase behaviour. Polym Chem 2015. [DOI: 10.1039/c5py00486a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LLDPE films doped with aggregachromic PE-Pery fluorophores were proposed as a thermochromic system in the 30–70 °C regime.
Collapse
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Giuseppa Gullo
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Antonella Battisti
- Istituto di Biofisica – CNR and NEST – Scuola Normale Superiore
- Pisa
- Italy
| | - Francesca Martini
- Istituto di Chimica dei Composti Organometallici del CNR
- 56124 Pisa
- Italy
- INSTM
- Unità di Ricerca di Pisa
| | - Silvia Borsacchi
- Istituto di Chimica dei Composti Organometallici del CNR
- 56124 Pisa
- Italy
- INSTM
- Unità di Ricerca di Pisa
| | - Marco Geppi
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
- Istituto di Chimica dei Composti Organometallici del CNR
| | - Giacomo Ruggeri
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
- INSTM
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
- INSTM
| |
Collapse
|
44
|
Kang DH, Jung HS, Ahn N, Yang SM, Seo S, Suh KY, Chang PS, Jeon NL, Kim J, Kim K. Janus-compartmental alginate microbeads having polydiacetylene liposomes and magnetic nanoparticles for visual lead(II) detection. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10631-10637. [PMID: 24926923 DOI: 10.1021/am502319m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Janus-compartmental alginate microbeads having two divided phases of sensory polydiacetylene (PDA) liposomes and magnetic nanoparticles were fabricated for facile sensory applications. The sensory liposomes are composed of PDA for label-free signal generation and 1,2-dipalmitoyl-sn-glycero-3-galloyl (DPGG) lipids whose galloyl headgroup has specific interactions with lead(II). The second phase having magnetic nanoparticles is designed for convenient handling of the microbeads, such as washing, solvent exchange, stirring, and detection, by applying magnetic field. Selective and convenient colorimetric detection of lead(II) and efficient removal of lead(II) by alginate matrix at the same time are demonstrated.
Collapse
Affiliation(s)
- Do Hyun Kang
- Department of Mechanical and Aerospace Engineering, WCU Program for Multiscale Mechanical Design, ‡Institute of Advanced Machinery and Design, Department of Mechanical and Aerospace Engineering, §Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee J, Pyo M, Lee SH, Kim J, Ra M, Kim WY, Park BJ, Lee CW, Kim JM. Hydrochromic conjugated polymers for human sweat pore mapping. Nat Commun 2014; 5:3736. [PMID: 24781362 PMCID: PMC4015324 DOI: 10.1038/ncomms4736] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/27/2014] [Indexed: 12/23/2022] Open
Abstract
Hydrochromic materials have been actively investigated in the context of humidity sensing and measuring water contents in organic solvents. Here we report a sensor system that undergoes a brilliant blue-to-red colour transition as well as ‘Turn-On’ fluorescence upon exposure to water. Introduction of a hygroscopic element into a supramolecularly assembled polydiacetylene results in a hydrochromic conjugated polymer that is rapidly responsive (<20 μs), spin-coatable and inkjet-compatible. Importantly, the hydrochromic sensor is found to be suitable for mapping human sweat pores. The exceedingly small quantities (sub-nanolitre) of water secreted from sweat pores are sufficient to promote an instantaneous colorimetric transition of the polymer. As a result, the sensor can be used to construct a precise map of active sweat pores on fingertips. The sensor technology, developed in this study, has the potential of serving as new method for fingerprint analysis and for the clinical diagnosis of malfunctioning sweat pores. Materials capable of colour changes in response to stimuli are useful in sensors and other applications. Here the authors show a conjugated polymer that rapidly responds to the presence of water, and use it as a sensor to map active sweat pores as a means of fingerprint analysis.
Collapse
Affiliation(s)
- Joosub Lee
- Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea
| | - Minkyeong Pyo
- Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea
| | - Sang-hwa Lee
- Department of Physics, Hanyang University, Seoul 133-791, Korea
| | - Jaeyong Kim
- 1] Department of Physics, Hanyang University, Seoul 133-791, Korea [2] Institute of Nano Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Moonsoo Ra
- Department of Electronic Engineering, Hanyang University, Seoul 133-791, Korea
| | - Whoi-Yul Kim
- Department of Electronic Engineering, Hanyang University, Seoul 133-791, Korea
| | - Bum Jun Park
- Department of Chemical Engineering, Kyung Hee University, Youngin-Si, Gyeonggi-do 446-701, Korea
| | - Chan Woo Lee
- Institute of Nano Science and Technology, Hanyang University, Seoul 133-791, Korea
| | - Jong-Man Kim
- 1] Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea [2] Institute of Nano Science and Technology, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
46
|
Abstract
The colour changing temperature of the thermo-solvatochromic solution of a chloro-nickel complex, di-(1-butyl-3-methylimidazolium) tetrachloronickelate, [bmim]2NiCl4 (0.14 mol L−1 in the photograph), in 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C2OHmim]BF4, can be continuously decreased from above room temperature to well below 0 °C simply by addition of excess [bmim]Cl (1.4 mol L−1 in the photograph), bringing about unprecedented cryo-solvatochromism in ionic liquids.
Collapse
Affiliation(s)
- Linpo Yu
- Department of Chemical and Environmental Engineering
- and Energy and Sustainability Research Division
- Faculty of Engineering
- University of Nottingham
- Nottingham, UK
| | - George Z. Chen
- Department of Chemical and Environmental Engineering
- and Energy and Sustainability Research Division
- Faculty of Engineering
- University of Nottingham
- Nottingham, UK
| |
Collapse
|