1
|
Amin Z, Rauf T, Jan Q, Kuchey MY, Sofi FA, Ismail T, Rashid A, Bhat BA, Sidiq N, Bhat MA. Synthesis of a Novel Hydrazone Functionality based Spectrophotometric Probe for Selective and Sensitive Estimation of Toxic Heavy Metal Ions. ChemistrySelect 2023. [DOI: 10.1002/slct.202202632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zainab Amin
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Tabasum Rauf
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Qounsar Jan
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Tabasum Ismail
- Department of Chemistry SP College Srinagar 190001, J & K India
| | - Auqib Rashid
- Medicinal Chemistry Division Indian Institute of Integrative Medicine, Sanatnagar Srinagar 190005, J&K India
| | - Bilal Ahmad Bhat
- Medicinal Chemistry Division Indian Institute of Integrative Medicine, Sanatnagar Srinagar 190005, J&K India
| | - Naheed Sidiq
- Department of Chemistry and Earth Sciences Qatar University Doha 2713 Qatar
| | - Mohsin Ahmad Bhat
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| |
Collapse
|
2
|
Li Z, He C, Zhou X, Wang L, Zhang Y, Feng G, Fang J. FeOOH nanosheet assisted metal ion coordination with porphyrins for rapid detection and removal of cadmium ions in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4947-4955. [PMID: 36426755 DOI: 10.1039/d2ay01508k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excessive cadmium ions in water bodies pose a severe challenge to ecology and human health, and the development of cadmium metal ion sensors is imperative. Here, we showed a dual-signal sensor based on colorimetry and fluorescence that was self-assembled from FeOOH nanosheets and TMPyP4. This nanocomposite enabled quick, selective cadmium ion detection. The Soret band at 442 nm in the UV absorption spectrum represented the coordination of cadmium ions with FeOOH@TMPyP4, and the absorbance increased linearly with increasing cadmium ion concentration (R2 = 0.989 and linear range: 0.5-10 μM). In the presence of FeOOH nanosheets, the coordination of cadmium ions with FeOOH@TMPyP4 took only 70 min, and the detection limit of cadmium ions was as low as 0.24 μM. In addition, Cd2+ could be effectively removed from the nanocomposite due to its easy separation from water. This research developed a simple and efficient approach for detecting and removing heavy metal ions from water bodies.
Collapse
Affiliation(s)
- Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Xiangming Zhou
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Lixiang Wang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Li M, He B, Yan H, Xie L, Cao X, Jin H, Wei M, Ren W, Suo Z, Xu Y. An aptasensor for cadmium ions detection based on PEI-MoS2@Au NPs 3D flower-like nanocomposites and Thi-PtPd NPs core-shell sphere. Anal Chim Acta 2022; 1232:340470. [DOI: 10.1016/j.aca.2022.340470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/01/2022]
|
4
|
Panáček D, Zdražil L, Langer M, Šedajová V, Baďura Z, Zoppellaro G, Yang Q, Nguyen EP, Álvarez-Diduk R, Hrubý V, Kolařík J, Chalmpes N, Bourlinos AB, Zbořil R, Merkoçi A, Bakandritsos A, Otyepka M. Graphene Nanobeacons with High-Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201003. [PMID: 35775954 DOI: 10.1002/smll.202201003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g-1 , respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+ , respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.
Collapse
Affiliation(s)
- David Panáček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Lukáš Zdražil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Michal Langer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Veronika Šedajová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Georgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
| | - Qiuyue Yang
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Emily P Nguyen
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Ruslan Álvarez-Diduk
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Vítězslav Hrubý
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Jan Kolařík
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
| | - Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, Ioannina, 45110, Greece
| | | | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys, 23, Barcelona, 08010, Spain
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
5
|
Zhuang H, Jiang X, Wu S, Wang S, Pang Y, Huang Y, Yan H. A novel polypeptide-modified fluorescent gold nanoclusters for copper ion detection. Sci Rep 2022; 12:6624. [PMID: 35459921 PMCID: PMC9033799 DOI: 10.1038/s41598-022-10500-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Biomolecule-functionalized fluorescent gold nanocluster (AuNCs) have attracted a lot of attention due to good biocompatibility, stable physicochemical properties and considerable cost advantages. Inappropriate concentration of Cu2+ may cause a variety of diseases. In this study, AuNCs were synthesized in alkaline aqueous solution using bovine serum albumin (BSA) as a template. And then, the peptide CCYWDAHRDY was coupled to AuNCs. Furthermore, the fluorescence of synthesized CCYWDAHRDY-AuNCs response to Cu2+ was evaluated. As the results shown that the CCYWDAHRDY-AuNCs can sensitively detect Cu2+. After adding Cu2+ to the probe system, the fluorescence of the CCYWDAHRDY-AuNCs was quenched. The detection conditions were at pH 6 and 30 °C for 10 min, the linear relationship between Cu2+ concentration and fluorescence intensity were good in the range of 0.1 ~ 4.2 μmol/L. The regression equation was y = − 105.9x + 693.68, the linear correlation coefficient is 0.997, and the minimum detection limit was 52 nmol/L.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Xinyu Jiang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Shujin Wang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Yanjun Huang
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
6
|
Xu M, Peng Y, Yang H, Zhou Y. Highly sensitive biosensor based on aptamer and hybridization chain reaction for detection of cadmium ions. LUMINESCENCE 2022; 37:665-671. [PMID: 35146864 DOI: 10.1002/bio.4207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/11/2022]
Abstract
In this work, a highly sensitive biosensor for detecting cadmium ions (Cd2+ ) was developed based on Cd2+ -specific DNA aptamer and hybridization chain reaction (HCR). The Cd2+ -aptamer (named S0) was used to recognize Cd2+ and trigger HCR reaction. Without Cd2+ , S0 initiated the HCR to form long nicked dsDNA structures to quench the fluorescence. Then, Cd2+ can bind with S0 to block HCR to recover fluorescence. This biosensor had high sensitivity with the detection limit of 0.36 nM and a linear range from 0 to 10 nM. Moreover, it showed a satisfactory selectivity and recovery rates.
Collapse
Affiliation(s)
- Mingming Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China
| | - Yu Peng
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China
| |
Collapse
|
7
|
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta 2021; 239:122903. [PMID: 34857381 DOI: 10.1016/j.talanta.2021.122903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Heavy metal pollution has severe threats to the ecological environment and human health. Thus, it is urgent to achieve the rapid, selective, sensitive and portable detection of heavy metal ions. To overcome the defects of traditional methods such as time-consuming, low sensitivity, high cost and complicated operation, QDs (Quantum dots)-based nanomaterials have been used in sensors to significantly improve the sensing performance. Due to their excellent physicochemical properties, high specific surface area, high adsorption and reactive capacity, nanomaterials could act as potential probes or offer enhanced sensitivity and create a promising nanosensors platform. In this review, the rapidly advancing types of QDs for heavy metal ions detection are first summarized. Modified with ligands, nanomaterials, or biomaterials, QDs are assembled on sensors by the interaction of electrostatic adsorption, chemical bonding, steric hindrance, and base-pairing. The stability of QDs-based nanosensors is improved by doping the elements to QDs, providing the reference substance, optimizing the assemble strategies and so on. Then, according to transducer principles, the two most typical sensor categories based on QDs: optical and electrochemical sensors are highlighted to be discussed. In the meanwhile, portable devices combining with QDs to adapt the practical detection in complex situations are summarized. The deficiencies and future challenges of QDs in toxicity, specificity, portability, multi-metal co-detection and degradation during the detection are also pointed out. In the end, the development trends of QDs-based nanosensors for heavy metal ions detection are discussed. This review presents an overall understanding, recent advances, current challenges and future outlook of QDs-based nanosensors for heavy metal detection.
Collapse
|
8
|
Liu Y, Zhang D, Ding J, Hayat K, Yang X, Zhan X, Zhang D, Lu Y, Zhou P. A Facile Aptasensor for Instantaneous Determination of Cadmium Ions Based on Fluorescence Amplification Effect of MOPS on FAM-Labeled Aptamer. BIOSENSORS-BASEL 2021; 11:bios11050133. [PMID: 33922514 PMCID: PMC8145427 DOI: 10.3390/bios11050133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Analytical performance and efficiency are two pivotal issues for developing an on-site and real-time aptasensor for cadmium (Cd2+) determination. However, suffering from redundant preparations, fabrications, and incubation, most of them fail to well satisfy the requirements. In this work, we found that fluorescence intensity of 6-carboxyfluorescein(FAM)-labeled aptamer (FAM-aptamer) could be remarkably amplified by 3-(N-morpholino)propane sulfonic acid (MOPS), then fell proportionally as Cd2+ concentration introduced. Importantly, the fluorescence variation occurred immediately after addition of Cd2+, and would keep stable for at least 60 min. Based on the discovery, a facile and ultra-efficient aptasensor for Cd2+ determination was successfully developed. The sensing mechanism was confirmed by fluorescence pattern, circular dichroism (CD) and intermolecular interaction related to pKa. Under the optimal conditions, Cd2+ could be determined rapidly from 5 to 4000 ng mL-1. The detection limit (1.92 ng mL-1) was also lower than the concentration limit for drinking water set by WHO and EPA (3 and 5 ng mL-1, respectively). More than a widely used buffer, MOPS was firstly revealed to have fluorescence amplification effect on FAM-aptamer upon a given context. Despite being sensitive to pH, this simple, high-performance and ultra-efficient aptasensor would be practical for on-site and real-time monitoring of Cd2+.
Collapse
Affiliation(s)
- Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jina Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejia Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitong Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-34205762
| |
Collapse
|
9
|
Girija S, Sankar SS, Thenrajan T, Kundu S, Wilson J. Bi-metallic zeolite imidazole framework nanofibers for the selective determination of Cd 2+ ions. J Mater Chem B 2021; 9:5656-5663. [PMID: 34190309 DOI: 10.1039/d1tb01170g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cobalt zinc-zeolite imidazole framework (Co/Zn-ZIF) nanofibers are made via an electrospinning (ES) approach and tested for the detection of heavy metal cadmium ions. Electrostatically attracted cobalt and zinc ions are bound regularly on the surface of the ZIF network. The cobalt and zinc ions are organized with the ZIF network, which provides the sturdily bonded tetrahedral structure of Co/Zn-ZIF, giving essential steadiness to the composite material. Cyclic voltammetry revealed that the observed profile is reversible, and the catalytic behavior of the electrodes provided evidence of interfacial electron transfer between the nanofiber-modified GCE surface and the metal ions. Interestingly, a careful determination of Cd2+ ions within the range of 100 nM to 1 mM with a low limit detection of 27.27 nM was undertaken. The established heavy metal ion detector shows excellent anti-interference abilities toward the observed electroactive species, and it was successfully employed using a tap water sample for Cd2+ ion detection, where good results were observed.
Collapse
Affiliation(s)
- S Girija
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - S Sam Sankar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India.
| | - T Thenrajan
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India.
| | - J Wilson
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
10
|
Wang X, Kong L, Gan Y, Liang T, Zhou S, Sun J, Wan H, Wang P. Microfluidic-based fluorescent electronic eye with CdTe/CdS core-shell quantum dots for trace detection of cadmium ions. Anal Chim Acta 2020; 1131:126-135. [DOI: 10.1016/j.aca.2020.06.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023]
|
11
|
Aydin Z, KeleŞ M. Colorimetric cadmium ion detection in aqueous solutions by newly synthesized Schiff bases. Turk J Chem 2020; 44:791-804. [PMID: 33488194 PMCID: PMC7671197 DOI: 10.3906/kim-1912-36] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/10/2020] [Indexed: 11/21/2022] Open
Abstract
Two newly synthesized Schiff bases DMCA and DMBA were used for selective detection of Cd2+ over a wide range of other metal ions in acetonitrile (ACN)/ Tris-HCl buffer (10 mM, pH 7.32, v/v 2:1). The sensors can detect Cd2+ ions by colour changes from colourless to orange for DMBA and yellow to reddish for DMCA. Response of the probes towards metal ions was investigated by using UV-vis spectroscopy. The complex stoichiometry between the sensors, DMBA and DMCA, and Cd2+ was found to be 2:1 and the binding constants were calculated to be 2.65 ×1012 M-2 and 4.95 ×1012 M-2, respectively. The absorbance-based detection limits of DMBA and DMCA were calculated as 0.438 μM and 0.102 μM, respectively. The sensors were also successfully applied to real samples.
Collapse
Affiliation(s)
- Ziya Aydin
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman Turkey
| | - Mustafa KeleŞ
- Department of Chemistry, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye Turkey
| |
Collapse
|
12
|
AYDIN Z. A Turn-on Fluorescent Sensor For Cadmium Ion Detection In Aqueous Solutions. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.638912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Choi J, Kim JH, Oh JW, Nam JM. Surface-enhanced Raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures. NANOSCALE 2019; 11:20379-20391. [PMID: 31642457 DOI: 10.1039/c9nr07439b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman scattering (SERS)-based sensors utilize the electromagnetic-field enhancement of plasmonic substrates with the chemical specificity of vibrational Raman spectroscopy to identify trace amounts of a wide variety of different target analytes while being minimally affected by photobleaching. However, despite many advantageous features of this method, SERS sensors, particularly for detecting hazardous chemicals, suffer from several limitations such as requirement of gigantic signal enhancement that is often poorly controllable, subtle change and degradation of the SERS substrate, consecutive fluctuation of the signal, the lack of reliable receptors for capturing targets of interest and the absence of general principles for detecting various chemicals in different phases and matrices. To overcome these limitations and for SERS sensors to find practical use, one must (1) acknowledge the characteristics of the matrices of target systems, (2) finely engineer and tune the receptors of the SERS sensor to properly extract the target analyte from the phase, and (3) implement additional mechanistic modifications to enhance the plasmonic signal. This minireview underlines the difficulties associated with different phases and a wide range of target analytes, and introduces the practical measures undertaken to overcome the respective difficulties in SERS-based detection of hazardous chemicals.
Collapse
Affiliation(s)
- Jaewon Choi
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | - Jae-Ho Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | - Jeong-Wook Oh
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| |
Collapse
|
14
|
Thinning shell thickness of CuInS2@ZnS quantum dots to boost detection sensitivity. Anal Chim Acta 2019; 1047:124-130. [DOI: 10.1016/j.aca.2018.09.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 11/24/2022]
|
15
|
Liu M, Tang F, Yang Z, Xu J, Yang X. Recent Progress on Gold-Nanocluster-Based Fluorescent Probe for Environmental Analysis and Biological Sensing. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1095148. [PMID: 30719370 PMCID: PMC6334364 DOI: 10.1155/2019/1095148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/18/2018] [Accepted: 12/02/2018] [Indexed: 05/07/2023]
Abstract
Gold nanoclusters (AuNCs) are one of metal nanoclusters, which play a pivotal role in the recent advances in the research of fluorescent probes for their fluorescence effect. They are favored by most researchers due to their strong stability in fluorescence and adjustability in fluorescence wavelength when compared to traditional organic fluorescent dyes. In this review, we introduce various synthesis strategies of gold-nanocluster-based fluorescent probes and summarize their application for environmental analysis and biological sensing. The use of gold-nanocluster-based fluorescent probes for the analysis of heavy metals and inorganic and organic pollutants is covered in the environmental analysis while biological labeling, imaging, and detection are presented in biological sensing.
Collapse
Affiliation(s)
- Mingxian Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Zhengli Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| |
Collapse
|
16
|
Wang SN, Zhu J, Li X, Li JJ, Zhao JW. Fluorescence turn-on sensing of trace cadmium ions based on EDTA-etched CdTe@CdS quantum dot. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:119-127. [PMID: 29742486 DOI: 10.1016/j.saa.2018.04.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/18/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Cadmium-caused environmental pollution and diseases have always been worldwide problems. Thus it is extremely urgent to establish a cheap, rapid, simple and selective detection method for trace cadmium in drinking water. In this study, a fluorescence "turn-on" method based on ethylene diamine tetraacetic acid (EDTA)-etched CdTe@CdS quantum dots (QDs) was designed to detect Cd2+. High resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were utilized for chemical and structural characterization of the as-prepared QDs. Based on chemical etching of EDTA on the surface of CdTe@CdS QDs, specific Cd2+ recognition sites were produced, and then results in fluorescence quenching. The introduction of Cd2+ could identify these sites and restore the fluorescence of the EDTA-QDs system. Under the optimum conditions, the nanoprobe shows a linear response range from 0.05 to 9 μM with a very low detection limit of 0.032 μM. In addition, the reported fluorescence probe in this work displays a good selectivity for trace Cd2+ over other metal ions and an admirable practicability in real water samples.
Collapse
Affiliation(s)
- Si-Nan Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
17
|
Pandey S, Kumar P, Gupta R. Polymerization led selective detection and removal of Zn2+and Cd2+ions: isolation of Zn- and Cd-MOFs and reversibility studies. Dalton Trans 2018; 47:14686-14695. [DOI: 10.1039/c8dt01956h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two post-functionalized chemosensors display remarkable sensing of Zn2+and Cd2+ionsviagenerating corresponding metal–organic frameworks (MOFs), whereas nitrate and nitrite ions reverse the MOF-polymerization process.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|
18
|
Noh Y, Jo EJ, Mun H, Ahn YD, Kim MG. Homogeneous and selective detection of cadmium ions by forming fluorescent cadmium-protein nanoclusters. CHEMOSPHERE 2017; 174:524-530. [PMID: 28189897 DOI: 10.1016/j.chemosphere.2017.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/18/2017] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
We synthesized fluorescent Cd nanoclusters (CdNCs) through a protein-directed method, and the synthesis method was utilized for a homogeneous, ultrasensitive, and selective detection of cadmium ion (Cd2+). CdNCs were synthesized using a modified protein-directed method for developing a rapid Cd2+ detection system. For rapid Cd2+ detection, the reaction time was reduced by optimizing the reaction conditions such as temperature, reducing agent concentration, and protein concentration. The synthesized CdNCs had ca. 2 nm diameter and showed strong fluorescence at 485 nm under 365 nm UV light. The fluorescence of the CdNCs increased with increasing Cd2+ concentrations, and the limit of detection in deionized water was 15.68 fM. This method enables the detection of Cd2+ through the Cd concentration-dependent formation of fluorescent CdNCs in tap, fountain, and pond water samples with detection limits of 0.75, 7.65, and 48.2 fM, respectively. The sensitivity and specificity of our method are comparable to those of several existing methods for Cd2+ detection. Furthermore, the system enables the homogeneous detection of Cd2+ without separation and washing, thereby broadening its application in analytical chemistry.
Collapse
Affiliation(s)
- Yuseon Noh
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyoyoung Mun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young-Deok Ahn
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
19
|
Singha DK, Majee P, Mondal SK, Mahata P. Selective Luminescence-Based Detection of Cd2+
and Zn2+
Ions in Water Using a Proton-Transferred Coordination Polymer-Amine Conjugate Pair. ChemistrySelect 2017. [DOI: 10.1002/slct.201700398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Debal Kanti Singha
- Department of Chemistry; Suri Vidyasagar College; Suri, Birbhum PIN−731101, West Bengal India
| | - Prakash Majee
- Department of Chemistry, Siksha−Bhavana; Visva−Bharati University; Santiniketan−731235, West Bengal India
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha−Bhavana; Visva−Bharati University; Santiniketan−731235, West Bengal India
| | - Partha Mahata
- Department of Chemistry; Suri Vidyasagar College; Suri, Birbhum PIN−731101, West Bengal India
| |
Collapse
|
20
|
Sakthivel P, Sekar K, Sivaraman G, Singaravadivel S. Rhodamine Diaminomaleonitrile Conjugate as a Novel Colorimetric Fluorescent Sensor for Recognition of Cd 2+ Ion. J Fluoresc 2017; 27:1109-1115. [PMID: 28220278 DOI: 10.1007/s10895-017-2046-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Abstract
Rhodamine diaminomaleonitrile linked probe (RD-1) shows highly sensitive colorimetric and selective turn-on fluorescent response to Cd2+ over other metal ions. The fluorescence intensity and absorbance of the probe RD-1 showed a good linearity, with very low detection limits of 18.5 nm. The probe RD-1 was preliminarily applied to the determination of Cd2+ ion in water samples from river and tap water with satisfying results. The live cell image confocal microscopy, HeLa cell demonstrated that RD-1 had low cytotoxicity with good membrane permeable property is successfully applied to fluorescence microscopic imaging for the detection of Cd2+ ions.
Collapse
Affiliation(s)
- Perumal Sakthivel
- Department of Chemistry, Anna University - University College of Engineering, Dindigul, 624622, India
| | - Karuppannan Sekar
- Department of Chemistry, Anna University - University College of Engineering, Dindigul, 624622, India.
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | | |
Collapse
|
21
|
Li L, Liao L, Ding Y, Zeng H. Dithizone-etched CdTe nanoparticles-based fluorescence sensor for the off–on detection of cadmium ion in aqueous media. RSC Adv 2017. [DOI: 10.1039/c6ra24971j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present work, a new fluorescence probe based on dithizone-etched CdTe nanoparticles was designed for the sensitive and selective detection of cadmium ion in environmental samplesviaa reversible off–on fluorescence mode.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Lanfeng Liao
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Yaping Ding
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Hongyan Zeng
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
22
|
Wang J, Jiang C, Wang X, Wang L, Chen A, Hu J, Luo Z. Fabrication of an "ion-imprinting" dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions. Analyst 2016; 141:5886-5892. [PMID: 27489889 DOI: 10.1039/c6an00868b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have fabricated a new dual-emission quantum dot (QD) nanohybrid for fluorescence ratiometric determination of cadmium ions (Cd2+) in water samples, where the "turn-on" model and "ion-imprinting" technique were incorporated simultaneously. The nanohybrid probe was composed of green-emitting CdSe QDs covalently linked onto the surface of silica nanoparticles embedded with red-emitting CdTe QDs. The chemical etching of ethylene diamine tetraacetic acid (EDTA) at the surface produced specific Cd2+ recognition sites and quenched the green fluorescence of outer CdSe QDs. Upon exposure to different amounts of Cd2+, the green fluorescence was gradually restored, whereas the inner red fluorescence remained constant. As a consequence, an obviously distinguishable fluorescence color variation (from red to green) of the probe solution was observed. Under the optimized conditions, the developed ratiometric sensor displayed a linear response range from 0.1 to 9 μM with a detection limit of 25 nM (S/N = 3) for Cd2+, which could offer an alternative sensing approach for the highly sensitive and selective detection of heavy metal ions.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Dasary SSR, Zones YK, Barnes SL, Ray PC, Singh AK. Alizarin Dye based ultrasensitive plasmonic SERS probe for trace level Cadmium detection in drinking water. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 224:65-72. [PMID: 26770012 PMCID: PMC4707966 DOI: 10.1016/j.snb.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Alizarin functionalized on plasmonic gold nanoparticle displays strong surface enhanced Raman scattering from the various Raman modes of Alizarin, which can be exploited in multiple ways for heavy metal sensing purposes. The present article reports a surface enhanced Raman spectroscopy (SERS) probe for trace level Cadmium in water samples. Alizarin, a highly Raman active dye was functionalized on plasmonic gold surface as a Raman reporter, and then 3-mercaptopropionic acid, 2,6-Pyridinedicarboxylic acid at pH 8.5 was immobilized on the surface of the nanoparticle for the selective coordination of the Cd (II). Upon addition of Cadmium, gold nanoparticle provide an excellent hotspot for Alizarin dye and Raman signal enhancement. This plasmonic SERS assay provided an excellent sensitivity for Cadmium detection from the drinking water samples. We achieved as low as 10 ppt sensitivity from various drinking water sources against other Alkali and heavy metal ions. The developed SERS probe is quite simple and rapid with excellent repeatability and has great potential for prototype scale up for field application.
Collapse
Affiliation(s)
- Samuel S R Dasary
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA, 39217
| | - Yolanda K Zones
- Department of Chemistry and Physics, Alcorn State University, 1000 ASU Dr, 780, Alcorn State, MS, USA, 39096-7500
| | - Sandra L Barnes
- Department of Chemistry and Physics, Alcorn State University, 1000 ASU Dr, 780, Alcorn State, MS, USA, 39096-7500
| | - P C Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA, 39217
| | - Anant K Singh
- Department of Chemistry and Physics, Alcorn State University, 1000 ASU Dr, 780, Alcorn State, MS, USA, 39096-7500
| |
Collapse
|
24
|
Wu Y, Zhan S, Wang L, Zhou P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 2015; 139:1550-61. [PMID: 24496116 DOI: 10.1039/c3an02117c] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The demand for selection of aptamers against various small chemical molecules has substantially increased in recent years. To incubate and separate target-specific aptamers, the conventional SELEX procedures generally need to immobilize target molecules on a matrix, which may be impotent to screen aptamers toward small molecules without enough sites for immobilization. Herein we chose Cd(II) as a model of a small molecule with less sites, and proposed a novel SELEX strategy of immobilizing ssDNA libraries rather than target molecules on a matrix, for selection of aptamers with high affinity to Cd(II). After eleven rounds of positive and negative selection, twelve T and G-rich of nonrepeating ssDNA sequences were identified, of which the Cd-4 aptamer displayed the highest binding affinity to Cd(II). The secondary structures of these sequences revealed that a stem-loop structure folded by the domain of their 30-random sequence is critical for aptamers to bind targets. Then the interaction between the selected Cd-4 aptamer and Cd(II) was confirmed by CD analysis, and the binding specificity toward other competitive metal ions was also investigated. The dissociation constant (Kd) of Cd-4 aptamer was determined as 34.5 nM for Cd(II). Moreover, the Cd-4 aptamer was considered a recognition element for the colorimetric detection of Cd(II) based on the aggregation of AuNPs by cationic polymer. Through spectroscopic quantitative analysis, Cd(II) in aqueous solution can be detected as low as 4.6 nM. The selected Cd-4 aptamer will offer a new substitute for the detection of Cd(II) or other applications like recovery of cadmium from polluted samples.
Collapse
Affiliation(s)
- Yuangen Wu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | | | | | | |
Collapse
|
25
|
Thatai S, Khurana P, Prasad S, Kumar D. Plasmonic detection of Cd 2+ ions using surface-enhanced Raman scattering active core–shell nanocomposite. Talanta 2015; 134:568-575. [DOI: 10.1016/j.talanta.2014.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|