1
|
Xing G, Wu L, Kuang G, Ma T, Chen Z, Tao Y, Kang Y, Zhang S. Integration of high surface-energy electrochromic polymer with in-situ polymerized quasi-solid electrolyte for efficient electrochromism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Cai Q, Yan H, Yao R, Luo D, Li M, Zhong J, Yang Y, Qiu T, Ning H, Peng J. From Traditional to Novel Printed Electrochromic Devices: Material, Structure and Device. MEMBRANES 2022; 12:1039. [PMID: 36363594 PMCID: PMC9695232 DOI: 10.3390/membranes12111039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Electrochromic materials have been considered as a new way to achieve energy savings in the building sector due to their potential applications in smart windows, cars, aircrafts, etc. However, the high cost of manufacturing ECDs using the conventional manufacturing methods has limited its commercialization. It is the advantages of low cost as well as resource saving, green environment protection, flexibility and large area production that make printing electronic technology fit for manufacturing electrochromic devices. This paper reviews the progress of research on printed electrochromic devices (ECDs), detailing the preparation of ECDs by screen printing, inkjet printing and 3D printing, using the scientific properties of discrete definition printing method. Up to now, screen printing holds the largest share in the electrochromic industry due to its low cost and large ink output nature, which makes it suitable especially for printing on large surfaces. Though inkjet printing has the advantages of high precision and the highest coloration efficiency (CE) can be up to 542 ± 10 cm2C-1, it has developed smoothly, and has not shown rigid needs. Inkjet printing is suitable for the personalized printing production of high precision and small batch electronic devices. Since 3D printing is a new manufacturing technology in the 21st century, with the characteristics of integrated molding and being highly controllable, which make it suitable for customized printing of complex devices, such as all kinds of sensors, it has gained increasing attention in the past decade. Finally, the possibility of combining screen printing with inkjet printing to produce high performance ECDs is discussed.
Collapse
Affiliation(s)
- Qingyue Cai
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Haoyang Yan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rihui Yao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Dongxiang Luo
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China
| | - Muyun Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jinyao Zhong
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuexin Yang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tian Qiu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Honglong Ning
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junbiao Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Tomé LC, Porcarelli L, Bara JE, Forsyth M, Mecerreyes D. Emerging iongel materials towards applications in energy and bioelectronics. MATERIALS HORIZONS 2021; 8:3239-3265. [PMID: 34750597 DOI: 10.1039/d1mh01263k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past two decades, ionic liquids (ILs) have blossomed as versatile task-specific materials with a unique combination of properties, which can be beneficial for a plethora of different applications. The additional need of incorporating ILs into solid devices led to the development of a new class of ionic soft-solid materials, named here iongels. Nowadays, iongels cover a wide range of materials mostly composed of an IL component immobilized within different matrices such as polymers, inorganic networks, biopolymers or inorganic nanoparticles. This review aims at presenting an integrated perspective on the recent progress and advances in this emerging type of material. We provide an analysis of the main families of iongels and highlight the emerging types of these ionic soft materials offering additional properties, such as thermoresponsiveness, self-healing, mixed ionic/electronic properties, and (photo)luminescence, among others. Next, recent trends in additive manufacturing (3D printing) of iongels are presented. Finally, their new applications in the areas of energy, gas separation and (bio)electronics are detailed and discussed in terms of performance, underpinning it to the structural features and processing of iongel materials.
Collapse
Affiliation(s)
- Liliana C Tomé
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| | - Luca Porcarelli
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia
| | - Jason E Bara
- University of Alabama, Department of Chemical & Biological Engineering, Tuscaloosa, AL 35487-0203, USA
| | - Maria Forsyth
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Jochem KS, Kolliopoulos P, Zare Bidoky F, Wang Y, Kumar S, Frisbie CD, Francis LF. Self-Aligned Capillarity-Assisted Printing of High Aspect Ratio Flexible Metal Conductors: Optimizing Ink Flow, Plating, and Mechanical Adhesion. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krystopher S. Jochem
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| | - Panayiotis Kolliopoulos
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| | - Fazel Zare Bidoky
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455, United States
| | - Yan Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455, United States
| | - Satish Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| | - Lorraine F. Francis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Tamate R, Watanabe M. Recent progress in self-healable ion gels. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:388-401. [PMID: 32939164 PMCID: PMC7476529 DOI: 10.1080/14686996.2020.1777833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 05/19/2023]
Abstract
Ion gels, soft materials that contain ionic liquids (ILs), are promising gel electrolytes for use in electrochemical devices. Due to the recent surge in demand for flexible and wearable devices, highly durable ion gels have attracted significant amounts of attention. In this review, we address recent advances in the development of ion gels that can heal themselves when mechanically damaged. Light- and thermally induced healing of ion gels are discussed as stimuli-responsive healing strategies, after which self-healable ion gels based on supramolecular and dynamic covalent chemistry are addressed. Tough, highly stretchable, and self-healable ion gels have recently been fabricated through the judicious design of polymer nanostructures in ILs in which polymer chains and IL cations and anions interact. The applications of self-healable ion gels to electrochemical devices are also briefly discussed.
Collapse
Affiliation(s)
- Ryota Tamate
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, Tsukuba, Japan
- CONTACT Ryota Tamate Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, Tsukuba305-0044, Japan
| | - Masayoshi Watanabe
- Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan
- Masayoshi Watanabe Institute of Advanced Sciences, Yokohama National University, Yokohama240-8501, Japan
| |
Collapse
|
6
|
Dorfman KD, Adrahtas DZ, Thomas MS, Frisbie CD. Microfluidic opportunities in printed electrolyte-gated transistor biosensors. BIOMICROFLUIDICS 2020; 14:011301. [PMID: 32002104 PMCID: PMC6984978 DOI: 10.1063/1.5131365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Printed electrolyte-gated transistors (EGTs) are an emerging biosensor platform that leverage the facile fabrication engendered by printed electronics with the low voltage operation enabled by ion gel dielectrics. The resulting label-free, nonoptical sensors have high gain and provide sensing operations that can be challenging for conventional chemical field effect transistor architectures. After providing an overview of EGT device fabrication and operation, we highlight opportunities for microfluidic enhancement of EGT sensor performance via multiplexing, sample preconcentration, and improved transport to the sensor surface.
Collapse
Affiliation(s)
- Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Demetra Z Adrahtas
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Mathew S Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
7
|
Nketia-Yawson B, Tabi GD, Noh YY. Polymer Electrolyte Blend Gate Dielectrics for High-Performance Ultrathin Organic Transistors: Toward Favorable Polymer Blend Miscibility and Reliability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17610-17616. [PMID: 31018635 DOI: 10.1021/acsami.9b03999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on systematic mobility enhancements in electrolyte-gated organic field-effect transistors (OFETs) by thinning down the active layer and exploiting polymer solid-state electrolyte gate insulators (SEGIs). The SEGI is composed of homogeneous poly(vinylidene fluoride- co-hexafluoropropylene) [P(VDF-HFP)] polymer solution-ion gel blends of high areal capacitance of >10 μF cm-2 at 1 Hz. By scaling up the poly(3-hexylthiophene) (P3HT) semiconducting layer by 1 order of magnitude (5-50 nm), an ultraviolet photoelectron spectroscopy examination reveals a downward vacuum-level shift generating a substantial hole injection barrier that originates from different interfacial dipole layer formations. The ultrathin (5.1 nm) P3HT FETs outperformed the other devices, exhibiting stable device characteristics with a highest field-effect mobility of >2 cm2 V-1 s-1 (effective mobility of 0.83 ± 0.05 cm2 V-1 s-1), on/off ratio of ∼106, low threshold voltage of <-0.6 V, and low gate-leakage current levels of ∼105 below the on-current levels in 10 μm channel length devices. We observed a positive threshold voltage shift in the P3HT/SEGI FETs with decreasing semiconductor thickness. The aforementioned mobility is at least 10 times greater than that of neat P(VDF-HFP) devices. The significant FET performance is attributed to a better insulator/semiconductor interface, efficient hole injection from the Au electrode resulting in a low contact resistance of <500 Ω cm, and boosted charge-carrier densities in the transistor channel. This work demonstrates an excellent approach for carrier mobility enhancement and reliability assessment in low-voltage-operated electrolyte-gated OFETs.
Collapse
Affiliation(s)
- Benjamin Nketia-Yawson
- Department of Energy and Materials Engineering , Dongguk University , 30 Pildong-ro, 1-gil , Jung-gu, Seoul 04620 , Republic of Korea
| | - Grace Dansoa Tabi
- Department of Energy and Materials Engineering , Dongguk University , 30 Pildong-ro, 1-gil , Jung-gu, Seoul 04620 , Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| |
Collapse
|
8
|
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017; 117:10212-10290. [PMID: 28756658 PMCID: PMC5553103 DOI: 10.1021/acs.chemrev.7b00074] [Citation(s) in RCA: 1201] [Impact Index Per Article: 171.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.
Collapse
Affiliation(s)
- Samuel Clark Ligon
- Laboratory
for High Performance Ceramics, Empa, The
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Robert Liska
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Jürgen Stampfl
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Matthias Gurr
- H.
B. Fuller Deutschland GmbH, An der Roten Bleiche 2-3, Lüneburg D-21335, Germany
| | - Rolf Mülhaupt
- Freiburg
Materials Research Center (FMF) and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, Freiburg D-79104, Germany
| |
Collapse
|
9
|
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.7b00074 impact factor 2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Samuel Clark Ligon
- Laboratory
for High Performance Ceramics, Empa, The Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | | | | | - Matthias Gurr
- H. B. Fuller Deutschland GmbH, An der Roten Bleiche 2-3, Lüneburg D-21335, Germany
| | - Rolf Mülhaupt
- Freiburg
Materials Research Center (FMF) and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, Freiburg D-79104, Germany
| |
Collapse
|
10
|
Zare Bidoky F, Frisbie CD. Parasitic Capacitance Effect on Dynamic Performance of Aerosol-Jet-Printed Sub 2 V Poly(3-hexylthiophene) Electrolyte-Gated Transistors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27012-27017. [PMID: 27641063 DOI: 10.1021/acsami.6b08396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Printed, low-voltage poly(3-hexylthiophene) (P3HT) electrolyte-gated transistors (EGTs) have favorable quasi-static characteristics, including sub 2 V operation, carrier mobility (μ) of 1 cm2/(V s), ON/OFF current ratio of 106, and static leakage current density of 10-6 A/cm2. Here we study the dynamic performance of P3HT EGTs in which the semiconductor, dielectric, and gate electrode were deposited using aerosol-jet printing; the source and drain electrodes were patterned by conventional microlithography. With a source-to-drain separation of 2.5 μm, the highest theoretical achievable switching frequency is ∼10 MHz, assuming the movement of charge through the semiconductor is the limiting step. However, the measured maximum switching frequency of P3HT EGTs to date is ∼1 kHz, implying that another process is slowing the response. By systematically varying the device geometry, we show that the frequency is limited by the capacitance between the gate and drain (i.e., parasitic capacitance). The traditional scaling of switching time with the square of channel length (L) does not hold for P3HT EGTs. Rather, minimizing the size of the drain electrode increases the maximum switching speed. We achieve 10 kHz for P3HT EGTs with source/drain electrode dimensions of 2.5 μm × 50 μm and channel dimensions of 2.5 μm × 50 μm. Further improvements will require additional shrinkage of electrode dimensions as well as consideration of other factors such as ion gel thickness and carrier mobility.
Collapse
Affiliation(s)
- Fazel Zare Bidoky
- Department of Chemistry and ‡Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemistry and ‡Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Lodge TP, Ueki T. Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids. Acc Chem Res 2016; 19:2107-2114. [PMID: 27704769 DOI: 10.1021/acs.accounts.6b00308] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Room temperature ionic liquids are of great interest for many advanced applications, due to the combination of attractive physical properties with essentially unlimited tunability of chemical structure. High chemical and thermal stability, favorable ionic conductivity, and complete nonvolatility are just some of the most important physical characteristics that make ionic liquids promising candidates for emerging technologies. Examples include separation membranes, actuators, polymer gel electrolytes, supercapacitors, ion batteries, fuel cell membranes, sensors, printable plastic electronics, and flexible displays. However, in these and other applications, it is essential to solidify the ionic liquid, while retaining the liquid state properties of interest. A broadly applicable solidification strategy relies on gelation by addition of suitable triblock copolymers with the ABA architecture, producing ion gels or ionogels. In this paradigm, the A end blocks are immiscible with the ionic liquid, and consequently self-assemble into micellar cores, while some fraction of the well-solvated B midblocks bridge between micelles, forming a percolating network. The chemical structures of the A and B repeat units, the molar mass of the blocks, and the concentration of the copolymer in the ionic liquid are all independently tunable to attain desired property combinations. In particular, the modulus of the resulting ion gel can be readily varied between 100 Pa and 1 MPa, with little sacrifice of the transport properties of the ionic liquid, such as ionic conductivity or gas diffusivity. Suitable A blocks can impart thermoreversible gelation (with solidification either on heating or cooling) or even photoreversible gelation. By virtue of the nonvolatility of ionic liquids, a wide range of processing strategies can be employed directly to prepare ion gels in thin or thick film forms, including solvent casting, spin coating, aerosol jet printing, photopatterning, and transfer printing. For higher modulus ion gels it is even possible to employ a manual "cut and stick" strategy for easy device fabrication. Ion gels prepared from common triblock copolymers, for example, with A = polystyrene and B = poly(ethylene oxide) or poly(methyl methacrylate), in imidazolium based ionic liquids provide exceptional performance in membranes for separating CO2 from N2 or CH4. The same materials also are the best available gate dielectrics for printed plastic electronics, because their high capacitance endows organic transistors with milliamp output currents for sub-1 V applied bias, with switching speeds that can go well beyond 100 kHz, while being amenable to large area roll-to-roll printing. Incorporation of well-designed electroluminescent (e.g., Ru(bpy)3-based) or electrochromic (e.g., viologen-based) moieties into ion gels held between transparent electrodes yields flexible color displays operating with sub-1 V dc inputs.
Collapse
Affiliation(s)
- Timothy P. Lodge
- Department of Chemistry and Department of Chemical Engineering & Materials Science, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States
| | - Takeshi Ueki
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
12
|
Cao C, Andrews JB, Kumar A, Franklin AD. Improving Contact Interfaces in Fully Printed Carbon Nanotube Thin-Film Transistors. ACS NANO 2016; 10:5221-5229. [PMID: 27097302 DOI: 10.1021/acsnano.6b00877] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-walled carbon nanotubes (CNTs) printed into thin films have been shown to yield high mobility, thermal conductivity, mechanical flexibility, and chemical stability as semiconducting channels in field-effect, thin-film transistors (TFTs). Printed CNT-TFTs of many varieties have been studied; however, there has been limited effort toward improving overall CNT-TFT performance. In particular, contact resistance plays a dominant role in determining the performance and degree of variability in the TFTs, especially in fully printed devices where the contacts and channel are both printed. In this work, we have systematically investigated the contact resistance and overall performance of fully printed CNT-TFTs employing three different printed contact materials-Ag nanoparticles, Au nanoparticles, and metallic CNTs-each in the following distinct contact geometries: top, bottom, and double. The active channel for each device was printed from the dispersion of high-purity (>99%) semiconducting CNTs, and all printing was carried out using an aerosol jet printer. Hundreds of devices with different channel lengths (from 20 to 500 μm) were fabricated for extracting contact resistance and determining related contact effects. Printed bottom contacts are shown to be advantageous compared to the more common top contacts, regardless of contact material. Further, compared to single (top or bottom) contacts, double contacts offer a significant decrease (>35%) in contact resistance for all types of contact materials, with the metallic CNTs yielding the best overall performance. These findings underscore the impact of printed contact materials and structures when interfacing with CNT thin films, providing key guidance for the further development of printed nanomaterial electronics.
Collapse
Affiliation(s)
- Changyong Cao
- Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina 27708, United States
| | - Joseph B Andrews
- Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina 27708, United States
| | - Abhinay Kumar
- Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina 27708, United States
| | - Aaron D Franklin
- Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
13
|
Hong K, Kim YH, Kim SH, Xie W, Xu WD, Kim CH, Frisbie CD. Aerosol jet printed, sub-2 V complementary circuits constructed from P- and N-type electrolyte gated transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7032-7037. [PMID: 24975133 DOI: 10.1002/adma.201401330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/23/2014] [Indexed: 06/03/2023]
Abstract
Printed low-voltage complementary inverters based on electrolyte gated transistors are demonstrated. The printed complementary inverters showed gain of 18 and power dissipation below 10 nW. 5-stage ring oscillators operate at 2 V with an oscillation frequency of 2.2 kHz, corresponding to stage delays of less than 50 μs. The printed circuits exhibit good stability under continuous dynamic operation.
Collapse
Affiliation(s)
- Kihyon Hong
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE. Minneapolis, MN, 55455, USA
| | | | | | | | | | | | | |
Collapse
|