1
|
Huang W, Cheng Y, Zhai J, Qin Y, Zhang W, Xie X. Expanded single-color barcoding in microspheres with fluorescence anisotropy for multiplexed biochemical detection. Analyst 2023; 148:4406-4413. [PMID: 37552039 DOI: 10.1039/d3an00938f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Single-color barcoding strategies could break the limits of spectral crosstalk in conventional intensity-based fluorescence barcodes. Fluorescence anisotropy (FA), a self-referencing quantity able to differentiate spectrally similar fluorophores, is highly attractive in designing fluorescent barcodes within a limited emission window. In this study, FA-based encoding of polystyrene (PS) microspheres was realized for the first time. The FA signals of fluorophores were stabilized inside PS microspheres owing to hampered rotational motion. Fluorescent labels were incorporated with similar emission but different structures, symmetries, and lifetimes. On the one hand, Förster Resonance Energy Transfer (FRET) including homo-FRET and hetero-FRET resulted in a decrease of steady-state FA with increasing dye loading, converting conventional intensity-based codes into FA-based codes. On the other hand, mixing dyes with different intrinsic FA values generated different FA values at the same fluorescence intensity level. Single color 5-plex FA-encoded microspheres were demonstrated and decoded on a homemade microscopic FA imaging platform in real time. The FA-encoded microspheres were successfully applied to detect the oligonucleotide of the foodborne bacterium, Bacillus cereus, without spectral crosstalk between the encoding and reporting dyes. Overall, FA-based encoding with an expanded coding capacity in the FA dimension holds great potential in multiplexed high-throughput chemical and biological analyses.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuemin Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Weian Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Jin Q, Zhang X, Zhang L, Li J, Lv Y, Li N, Wang L, Wu R, Li LS. Fabrication of CuInZnS/ZnS Quantum Dot Microbeads by a Two-Step Approach of Emulsification-Solvent Evaporation and Surfactant Substitution and Its Application for Quantitative Detection. Inorg Chem 2023; 62:3474-3484. [PMID: 36789761 DOI: 10.1021/acs.inorgchem.2c03783] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
CuInS2 quantum dots (CIS QDs) are considered to be promising alternatives for Cd-based QDs in the fields of biology and medicine. However, high-quality hydrophobic CIS QDs are difficult to be transferred to water due to their 1-dodecylmercaptan (DDT) ligands. Therefore, the fluorescence and stability of the prepared aqueous CIS QDs is not enough to meet the requirement for sensitive detection. Here, as large as 13 nm CuInZnS/ZnS QDs with DDT ligands were first synthesized, and then, CuInZnS/ZnS microbeads (QBs) containing thousands of QDs were successfully fabricated by a two-step approach of emulsion-solvent evaporation and surfactant substitution. Through emulsion-solvent evaporation, the CuInZnS/ZnS QDs formed microbeads in the microemulsion with dodecyl trimethylammonium bromide (DTAB), and the Förster resonance energy transfer (FRET) has been effectively overcome. Then, CO-520 was introduced to substitute DTAB to improve the stability and water solubility. Lastly, the microbeads were coated with a SiO2 shell and carboxylated. Subsequently, the constructed QBs (∼210 nm) were used as labels in a fluorescence immunosorbent assay (FLISA) for quantitative detection of heart type fatty acid binding protein (H-FABP), and the limit of detection was 0.48 ng mL-1, which indicated a greatly improved detection sensitivity compared to that of the Cd-free QDs. The highly fluorescent and stable CuInZnS/ZnS QBs will have great application prospects in many biological fields.
Collapse
Affiliation(s)
- Qiaoli Jin
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xuhui Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lifang Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Jinjie Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Yanbing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ning Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruili Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lin Song Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Abstract
The field of nanotechnology has been a significant research focus in the last thirty years. This emphasis is due to the unique optical, electrical, magnetic, chemical and biological properties of materials approximately ten thousand times smaller than the diameter of a hair strand. Researchers have developed methods to synthesize and characterize large libraries of nanomaterials and have demonstrated their preclinical utility. We have entered a new phase of nanomedicine development, where the focus is to translate these technologies to benefit patients. This review article provides an overview of nanomedicine's unique properties, the current state of the field, and discusses the challenge of clinical translation. Finally, we discuss the need to build and strengthen partnerships between engineers and clinicians to create a feedback loop between the bench and bedside. This partnership will guide fundamental studies on the nanoparticle-biological interactions, address clinical challenges and change the development and evaluation of new drug delivery systems, sensors, imaging agents and therapeutic systems.
Collapse
Affiliation(s)
- Shrey Sindhwani
- From the, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Warren C W Chan
- From the, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada.,Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.,Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
He X, Jia K, Bai Y, Chen Z, Liu Y, Huang Y, Liu X. Quantum dots encoded white-emitting polymeric superparticles for simultaneous detection of multiple heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124263. [PMID: 33535353 DOI: 10.1016/j.jhazmat.2020.124263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Simultaneous detection of multiple heavy metal ions (HMI) is of great importance for the environmental monitoring, and the analytical tools based on multiband emissive fluorescent probes have been regarded as one of the most promising candidate for multiple HMI detection. Herein, the rod-coil amphiphilic block copolymer (BCP) with intrinsic blue fluorescence emission has been synthesized and subsequently employed to encapsulate two types of hydrophobic quantum dots (QD) with green and red fluorescence emission via the three dimensionally confined emulsion self-assembly, leading to the generation of white-emitting superparticles showing good colloidal stability and stable aqueous phase fluorescence. Furthermore, it was found that the fluorescence emission intensity of obtained superparticles can be selectively quenched by Ag+, Hg2+, Cu2+ and Fe3+ ions via different mechanisms, and the four metal ions can be further discriminated according to their distinct combinational quenching effects onto three fluorescent bands of white-emitting superparticles. In addition, an analytical model was built to enable the simultaneous detection of Cu2+, Hg2+ and Fe3+ in the real sample. Basically, the current work opens the new way to fabricate fluorescent probes with multiple emission bands, which can be easily adapted to prepare more complicated QD encoded fluorescent probes for high throughput detection.
Collapse
Affiliation(s)
- Xiaohong He
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731 Chengdu, PR China
| | - Kun Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731 Chengdu, PR China.
| | - Yun Bai
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731 Chengdu, PR China
| | - Zhongyuan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054 Chengdu, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054 Chengdu, PR China
| | - Yumin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731 Chengdu, PR China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731 Chengdu, PR China
| |
Collapse
|
5
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre Iran University of Medical Sciences Tehran Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Dankook University Cheonan Republic of Korea
- Department of Biomaterials Science, School of Dentistry Dankook University Cheonan Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Fluorescent microbeads for point-of-care testing: a review. Mikrochim Acta 2019; 186:361. [PMID: 31101985 DOI: 10.1007/s00604-019-3449-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
Microbead-based point-of-care testing (POCT) has demonstrated great promise in translating detection modalities from bench-side to bed-side. This is due to the ease of visualization, high surface area-to-volume ratio of beads for efficient target binding, and efficient encoding capability for simultaneous detection of multiple analytes. This review (with 112 references) summarizes the progress made in the field of fluorescent microbead-based POCT. Following an introduction into the field, a first large section sums up techniques and materials for preparing microbeads, typically of dye-labelled particles, various kinds of quantum dots and upconversion materials. Further subsections cover the encapsulation of nanoparticles into microbeads, decoration of nanoparticles on microbeads, and in situ embedding of nanoparticles during microbead synthesis. A next large section summarizes microbead-based fluorometric POCT, with subsections on detection of nucleic acids, proteins, circulating tumor cells and bacteria. A further section covers emerging POCT based on the use of smartphones or flexible microchips. The last section gives conclusions and an outlook on current challenges and possible solutions. Aside from giving an overview on the state of the art, we expect this article to boost the further development of POCT technology. Graphical Abstract Schematic presentation of the fabrication of microbeads, the detection targets of interest including bacteria, circulating tumor cells (CTCs), protein and nucleic acid, and the emerging point-of-care testing (POCT) platform. The colored wheels of the bus represent the fluorescent materials embedded in (red color) or decorated on the surface of microbeads (green color).
Collapse
|
7
|
He Q, Chen X, He Y, Guan T, Feng G, Lu B, Wang B, Zhou X, Hu L, Cao D. Spectral-optical-tweezer-assisted fluorescence multiplexing system for QDs-encoded bead-array bioassay. Biosens Bioelectron 2019; 129:107-117. [PMID: 30685705 DOI: 10.1016/j.bios.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
As an efficient tool in the multiplexed detection of biomolecules, bead-array could achieve separation-free detection to multiple targets, making it suitable to analyze valuable and scarce samples like antigen and antibody from living organism. Herein, we propose a spectral-optical-tweezer-assisted fluorescence multiplexing system to analyze biomolecule-conjugated bead-array. Using optical tweezer, we trapped and locked beads at the focus to accept stimulation, offering a stable and optimized analysis condition. Moving the system focus and scanning the sample slide, we achieved emissions collection to QDs-encoded bead-array after the multiplexed detection. The emission spectra of fluorescence were collected and recorded by the spectrometer. By recognizing locations of decoding peaks and counting the intensities of label signals of emission spectra, we achieved qualitative and quantitative detection to targets. As proof-of-concept studies, we use this system to carry out multiplexed detection to various types of anti-IgG in the single sample and the detection limit reaches 1.52 pM with a linear range from 0.31 to 10 nM. Through further optimization of experimental conditions, we achieved specific detection to target IgG with sandwich method in human serum and the detection limit reaches as low as 0.23 pM with a linear range from 0.88 to 28 pM, validating the practical application of this method in real samples.
Collapse
Affiliation(s)
- Qinghua He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xuejing Chen
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Department of Physics, Tsinghua University, Beijing 100084, China
| | - Tian Guan
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Guangxia Feng
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bangrong Lu
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Bei Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xuesi Zhou
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Liangshan Hu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
8
|
Dual-channel-coded microbeads for multiplexed detection of biomolecules using assembling of quantum dots and element coding nanoparticles. Anal Chim Acta 2018; 1024:153-160. [DOI: 10.1016/j.aca.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/26/2023]
|
9
|
Yang M, Zhang Y, Cui M, Tian Y, Zhang S, Peng K, Xu H, Liao Z, Wang H, Chang J. A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles. NANOSCALE 2018; 10:15865-15874. [PMID: 30105335 DOI: 10.1039/c8nr04138e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The detection of mycotoxins in food is urgently needed because they pose a significant threat to public health. In this study, we developed a quantitative detection platform for mycotoxins by integrating multicolor upconversion nanoparticle barcode technology with fluorescence image processing using a smartphone-based portable device. The multi-colored upconversion nanoparticle encoded microspheres (UCNMs) were used as encoded signals for detecting different mycotoxins simultaneously. After indirect competitive immunoassays using UCNMs, images could be captured by the portable device and the camera of a smartphone. Then, a self-written Android application, which is an HSV-based image recognition program installed on a smartphone, analyzed images and offered a reliable and accurate result in less than 1 min. The quantitative detection platform of mycotoxins proved to be feasible and reliable, and the limit of detection (LOD) was 1 ng, which was lower than that obtained from standard assays. This study demonstrates a method for detecting mycotoxins in food and other point of care analysis.
Collapse
Affiliation(s)
- Minye Yang
- College of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang DSZ, Jiang Y, Wei D, Wei X, Xu H, Gu H. Polymers mediate a one-pot route for functionalized quantum dot barcodes with a large encoding capacity. NANOSCALE 2018; 10:12461-12471. [PMID: 29926869 DOI: 10.1039/c8nr01888j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With the increasing demands for high-throughput multiplexed bioassays, quantum dot (QD)-encoded microbeads as biocarriers for various bioreactions have attracted considerable attention. However, three key requirements for these biocarriers are still longstanding issues: a stable fluorescence intensity, a large encoding capacity and abundant surface functional groups. Here, a novel one-pot strategy is developed, generating functionalized QD-encoded microspheres with a strong fluorescence intensity and optical stability. With poly(styrene-co-maleic anhydride) (PSMA) molecules as mediators, the encapsulation of QDs and carboxylation of the bead surface are integrated together, greatly improving the preparation efficiency and guaranteeing their potential application in biodetection. Moreover, the mechanism for preparing QD-doped beads is further proposed, which helps to precisely manipulate the preparation process and accurately encode the beads. Through this approach, a single- and dual-color barcode library of QD-encoded microspheres has been successfully established, which demonstrates their great potential in suspension arrays.
Collapse
Affiliation(s)
- Ding Sheng-Zi Zhang
- Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Bian F, Wang H, Sun L, Liu Y, Zhao Y. Quantum-dot-encapsulated core–shell barcode particles from droplet microfluidics. J Mater Chem B 2018; 6:7257-7262. [DOI: 10.1039/c8tb00946e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new class of QD-encapsulated core–shell barcode particles for biomedical applications were generated using a capillary microfluidic device.
Collapse
Affiliation(s)
- Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Huan Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
13
|
Zhang J, Zhao Q, Wu Y, Zhang B, Peng W, Piao J, Zhou Y, Gao W, Gong X, Chang J. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Biosens Bioelectron 2017; 97:26-33. [DOI: 10.1016/j.bios.2017.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
14
|
You L, Li R, Dong X, Wang F, Guo J, Wang C. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. J Colloid Interface Sci 2017; 488:109-117. [DOI: 10.1016/j.jcis.2016.10.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 01/16/2023]
|
15
|
Digital barcodes of suspension array using laser induced breakdown spectroscopy. Sci Rep 2016; 6:36511. [PMID: 27808270 PMCID: PMC5093434 DOI: 10.1038/srep36511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/14/2016] [Indexed: 01/24/2023] Open
Abstract
We show a coding method of suspension array based on the laser induced breakdown spectroscopy (LIBS), which promotes the barcodes from analog to digital. As the foundation of digital optical barcodes, nanocrystals encoded microspheres are prepared with self-assembly encapsulation method. We confirm that digital multiplexing of LIBS-based coding method becomes feasible since the microsphere can be coded with direct read-out data of wavelengths, and the method can avoid fluorescence signal crosstalk between barcodes and analyte tags, which lead to overall advantages in accuracy and stability to current fluorescent multicolor coding method. This demonstration increases the capability of multiplexed detection and accurate filtrating, expanding more extensive applications of suspension array in life science.
Collapse
|
16
|
Gong X, Yan H, Yang J, Wu Y, Zhang J, Yao Y, Liu P, Wang H, Hu Z, Chang J. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection. Anal Chim Acta 2016; 939:84-92. [DOI: 10.1016/j.aca.2016.08.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
|
17
|
Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens Bioelectron 2016; 77:886-93. [DOI: 10.1016/j.bios.2015.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022]
|
18
|
Zhang Y, Dong C, Su L, Wang H, Gong X, Wang H, Liu J, Chang J. Multifunctional Microspheres Encoded with Upconverting Nanocrystals and Magnetic Nanoparticles for Rapid Separation and Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:745-753. [PMID: 26653130 DOI: 10.1021/acsami.5b09913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immunoassays based on the downconversion target materials (organic dyes or quantum dots) lead to fairly strong spectral interference between the coded signal and reporter signal, which seriously affects the detection accuracy and hampers their applications. In this work, a new kind of upconverting nanocrystals encoded magnetic microspheres (UCNMMs) were designed and prepared successfully to solve the problem mentioned above. The UCNMMs were obtained by incorporating magnetic Fe3O4 nanoparticles and upconverting nanocrystals with polystyrene microspheres. Due to that upconverting nanocrystals (UCNs) and reporter signals are excitated by near-infrared and UV/visible light separately, immunoassays based on UCNMMs do not occur optical spectral interferences. Furthermore, these new functionalized UCNMMs have excellent properties in binding biomolecules and fast separating, which would have large potential applications in multiplexed assays.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Chunhong Dong
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Lin Su
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Hanjie Wang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Xiaoqun Gong
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Huiquan Wang
- School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin 300387, People's Republic of China
| | - Junqing Liu
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| |
Collapse
|
19
|
Zhang X, Zhou Q, Shen Z, Li Z, Fei R, Ji E, Hu S, Hu Y. Quantum dot incorporated Bacillus spore as nanosensor for viral infection. Biosens Bioelectron 2015; 74:575-80. [DOI: 10.1016/j.bios.2015.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/29/2015] [Accepted: 07/05/2015] [Indexed: 11/25/2022]
|
20
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
21
|
Leng Y, Sun K, Chen X, Li W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev 2015; 44:5552-95. [PMID: 26021602 PMCID: PMC5223091 DOI: 10.1039/c4cs00382a] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and "point of care" platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields.
Collapse
Affiliation(s)
- Yuankui Leng
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | |
Collapse
|
22
|
Liu Y, Liu L, He Y, Zhu L, Ma H. Decoding of Quantum Dots Encoded Microbeads Using a Hyperspectral Fluorescence Imaging Method. Anal Chem 2015; 87:5286-93. [DOI: 10.1021/acs.analchem.5b00398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yixi Liu
- Department
of Physics, Tsinghua University, Beijing 100084, China
| | - Le Liu
- Institute
of Green Chemistry and Energy, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yonghong He
- Department
of Physics, Tsinghua University, Beijing 100084, China
| | - Liang Zhu
- Department
of Physics, Tsinghua University, Beijing 100084, China
| | - Hui Ma
- Department
of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Vaidya SV, Couzis A, Maldarelli C. Reduction in aggregation and energy transfer of quantum dots incorporated in polystyrene beads by kinetic entrapment due to cross-linking during polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3167-79. [PMID: 25674811 DOI: 10.1021/la503251s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the development of barcoded polystyrene microbeads, approximately 50 μm in diameter, which are encoded by incorporating multicolored semiconductor fluorescent nanocrystals (quantum dots or QDs) within the microbeads and using the emission spectrum of the embedded QDs as a spectral label. The polymer/nanocrystal bead composites are formed by polymerizing emulsified liquid droplets of styrene monomer and QDs suspended in an immiscible continuous phase (suspension polymerization). We focus specifically on the effect of divinylbenzene (DVB) added to cross-link the linearly growing styrene polymer chains and the effect of this cross-linking on the state of aggregation of the nanocrystals in the composite. Aggregated states of multicolor QDs give rise to nonradiative resonance energy transfer (RET) which distorts the emission label from a spectrum recorded in a reference solvent in which the nanocrystals are well dispersed and unaggregated. A simple barcode is chosen of a mixture of QDs emitting at 560 (yellow) and 620 nm (red). We find that for linear chain growth (no DVB), the QDs aggregate as is evident from the emission spectrum and the QD distribution as seen from confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images. Increasing the extent of cross-linking by the addition of DVB is shown to significantly decrease the aggregation and provide a clear label. We suggest that in the absence of cross-linking, linearly growing polymer chains, through enthalpic and entropic effects, drive the nanocrystals into inclusions, while cross-linking kinetically entraps the particle and prevents their aggregation.
Collapse
Affiliation(s)
- Shyam V Vaidya
- Department of Chemical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Alex Couzis
- Department of Chemical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Charles Maldarelli
- Department of Chemical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
24
|
Chen Y, Dong PF, Xu JH, Luo GS. Microfluidic generation of multicolor quantum-dot-encoded core-shell microparticles with precise coding and enhanced stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8538-42. [PMID: 24956221 DOI: 10.1021/la501692h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A novel microfluidic approach is developed to prepare multicolor QDs-encoded core-shell microparticles with precise and various barcode and enhanced stability performance. With the protection of the hydrogel shell, the leakage of QDs is avoided and the fluorescent stability is enhanced greatly. By embedding different QDs into different cores, no interaction between different QDs existed and the fluorescence spectrum of each kind of QDs can be recorded, respectively. Compared with QDs mixtures in a single particle, it is unnecessary to separate the emissions of QDs in different colors, and deconvolution algorithms are not needed. Therefore, it still maintains precise coding even if QDs with approximate emission wavelengths are used.
Collapse
Affiliation(s)
- Yang Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | | | | | | |
Collapse
|