1
|
Sun Z, Chen X, Miao F, Meng N, Hu K, Xiong S, Peng X, Ma L, Zhou C, Yang Y. Engineering Ag-Decorated Graphene Oxide Nano-Photothermal Platforms with Enhanced Antibacterial Properties for Promoting Infectious Wound Healing. Int J Nanomedicine 2024; 19:8901-8927. [PMID: 39233743 PMCID: PMC11372703 DOI: 10.2147/ijn.s474536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.
Collapse
Affiliation(s)
- Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Na Meng
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Keqiang Hu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Shaotang Xiong
- The Second People's Hospital of China Three Gorges University·the Second People's Hospital of Yichang, Hubei, People's Republic of China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| |
Collapse
|
2
|
Jiao K, Cao W, Yuan W, Yuan H, Zhu J, Gao X, Duan S, Yong R, Zhao Z, Song P, Jiang ZJ, Wang Y, Zhu J. Cellulose Nanostructures as Tunable Substrates for Nanocellulose-Metal Hybrid Flexible Composites. Chempluschem 2024; 89:e202300704. [PMID: 38363060 DOI: 10.1002/cplu.202300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 02/17/2024]
Abstract
Nanocomposite represents the backbone of many industrial fabrication applications and exerts a substantial social impact. Among these composites, metal nanostructures are often employed as the active constituents, thanks to their various chemical and physical properties, which offer the ability to tune the application scenarios in thermal management, energy storage, and biostable materials, respectively. Nanocellulose, as an emerging polymer substrate, possesses unique properties of abundance, mechanical flexibility, environmental friendliness, and biocompatibility. Based on the combination of flexible nanocellulose with specific metal fillers, the essential parameters involving mechanical strength, flexibility, anisotropic thermal resistance, and conductivity can be enhanced. Nowadays, the approach has found extensive applications in thermal management, energy storage, biostable electronic materials, and piezoelectric devices. Therefore, it is essential to thoroughly correlate cellulose nanocomposites' properties with different metallic fillers. This review summarizes the extraction of nanocellulose and preparation of metal modified cellulose nanocomposites, including their wide and particular applications in modern advanced devices. Moreover, we also discuss the challenges in the synthesis, the emerging designs, and unique structures, promising directions for future research. We wish this review can give a valuable overview of the unique combination and inspire the research directions of the multifunctional nanocomposites using proper cellulose and metallic fillers.
Collapse
Affiliation(s)
- Keran Jiao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
- Zhenzhou Research Institute, Harbin Institute of Technology, Zhenzhou, 450000, China
| | - Wenwen Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Hang Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Jia Zhu
- School of Intelligent Manufacturing and Intelligent Transportation, Suzhou City University, Suzhou, 215104, China
| | - Xiaowu Gao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Ruiqi Yong
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Ziwei Zhao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute & Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
- Zhenzhou Research Institute, Harbin Institute of Technology, Zhenzhou, 450000, China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
- Zhenzhou Research Institute, Harbin Institute of Technology, Zhenzhou, 450000, China
| |
Collapse
|
3
|
Wu Y, Lin Y, Chen Y, Fan H, Zhang J, Li J, Lin W, Yi G, Feng X. Adhesive polydopamine-based photothermal hybrid hydrogel for on-demand lidocaine delivery, effective anti-bacteria, and prolonged local long-lasting analgesia. Int J Biol Macromol 2024; 259:129266. [PMID: 38199532 DOI: 10.1016/j.ijbiomac.2024.129266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Considering the astonishing prevalence of localized pain affecting billions of patients worldwide, the development of advanced analgesic formulations or delivery systems to achieve clinical applicability is of great significance. In this study, an integrated PDA-based LiH@PDA@Ag@PAA@Gelatin system was designed for sustained delivery of lidocaine hydrochloride (LiH). By optimizing the preparation process and formulation of the hydrogel, the hydrogel exhibited superior mechanical properties, reversibility, adhesion strength, and self-healing attributes. Moreover, PDA@Ag nanoparticles were evenly dispersed within the hydrogel, and the optimized PDA@Ag@PAA@Gelatin showed a higher photothermal conversion efficiency than that of pure PDA. Importantly, LiH@PDA@Ag@PAA@Gelatin could effectively capture and eradicate bacteria through the synergistic interaction between near-infrared (NIR), PDA, Ag and LiH. In vitro and in vivo tests demonstrated that LiH@PDA@Ag@PAA@Gelatin exhibited higher drug delivery efficiency compared to commercial lidocaine patches. By evaluating the mechanical pain withdrawal threshold of the spared nerve injury (SNI) model in rats, it was proven that LiH@PDA@Ag@PAA@Gelatin enhanced and prolonged the analgesic effect of LiH. Furthermore, LiH@PDA@Ag@PAA@Gelatin induced by NIR possessed excellent on-demand photothermal analgesic ability. Therefore, this study develops a convenient method for preparing localized analgesic hydrogel patches, providing an important step towards advancing PDA-based on-demand pain relief applications.
Collapse
Affiliation(s)
- Yan Wu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yibin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiting Fan
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jieheng Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xia Feng
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Zhou X, Chen T, Ma T, Yan L, Wei H, Liu S, Dai Z, Xie Z, Deng J, Tao S, Fan L, Chu Y. CuS@TA-Fe Nanoparticle-Doped Multifunctional Hydrogel with Peroxide-Like Properties and Photothermal Properties for Synergistic Antimicrobial Repair of Infected Wounds. Adv Healthc Mater 2023; 12:e2301206. [PMID: 37661773 DOI: 10.1002/adhm.202301206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Bacterial infection is a critical factor in wound healing. Due to the abuse of antibiotics, some pathogenic bacteria have developed resistance. Thus, there is an urgent need to develop a non-antibiotic-dependent multifunctional wound dressing for the treatment of bacteria-infected wounds. In this work, a multifunctional AOCuT hydrogel embedded with CuS@TA-Fe nanoparticles (NPs) through Schiff base reaction between gelatin quaternary ammonium salt - gallic acid (O-Gel-Ga) and sodium dialdehyde alginate (ADA) along with electrostatic interactions with CuS@TA-Fe NPs is prepared. These composite hydrogels possess favorable injectability, rapid shape adaptation, electrical conductivity, photothermal antimicrobial activity, and biocompatibility. Additionally, the doped NPs not only impart fast self-healing properties and excellent adhesion performance to the hydrogels, but also provide excellent peroxide-like properties, enabling them to scavenge free radicals and exhibit anti-inflammatory and antioxidant capabilities via photothermal (PTT) and photodynamic (PDT) effects. In an S. aureus infected wound model, the composite hydrogel effectively reduces the expression level of wound inflammatory factors and accelerates collagen deposition, epithelial tissue, and vascular regeneration, thereby promoting wound healing. This safe and synergistic therapeutic system holds great promise for clinical applications in the treatment of infectious wounds.
Collapse
Affiliation(s)
- Xiaohu Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Tiantian Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Tengda Ma
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haojie Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Shuang Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyin Dai
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhizhong Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Deng
- Department of Health Management (Physical Examination), The Third People's Hospital of Hubei Province Affiliated to Jianghan University, Wuhan, 430022, China
| | - Shengxiang Tao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430022, China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yingying Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
5
|
Mo F, Zhong S, You T, Lu J, Sun D. Aptamer and DNAzyme-Functionalized Cu-MOF Hybrid Nanozymes for the Monitoring and Management of Bacteria-Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37921634 DOI: 10.1021/acsami.3c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Metal-organic frameworks (MOFs) with peroxidase (POD)-like activity have great potential for combating drug-resistant bacterial infections. However, the use of POD-like activities is severely limited by low oxygen levels and high levels of glutathione (GSH) within the microenvironment of bacterial infection. Herein, G-quadruplex/hemin DNAzyme-aptamer probes and tannic acid-chelated Au nanoparticle (Au-TA)-decorated Cu-based MOF nanosheets (termed GATC) with triple-enzyme activities were developed for visual detection and efficient antibacterial therapy. First, the monometallic MOFs (Cu-ZIF) showed the best catalytic and loading capacity performance compared with the bimetallic MOFs (CoCu-ZIF and ZnCu-ZIF). Then, Cu-MOFs, Au-TA, and DNAzyme improve the POD-like activity to generate more hydroxyl radicals (•OH) to kill bacteria. GATC can bind to bacteria through aptamer recognition, increasing the bacterial surface contact area for efficient antibacterial activity. GATC can decompose H2O2 into O2 to alleviate hypoxia and improve the microenvironment due to its catalase (CAT)-like activity. In addition, GATC exhibited GSH peroxidase-like activity, which can avoid the loss of •OH and result in bacterial death more easily. Compared with previous studies, GATC exhibited extraordinary bactericidal ability at an extremely low dosage of 3 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Notably, the GATC-catalyzed chromogenic reaction could accurately monitor the MRSA infection treatment process. Overall, this work could establish a therapeutic platform for the monitoring and management of bacteria-infected wounds.
Collapse
Affiliation(s)
- Fayin Mo
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Sheng Zhong
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Tianhui You
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| |
Collapse
|
6
|
Jodeiri K, Foerster A, Trindade GF, Im J, Carballares D, Fernández-Lafuente R, Pita M, De Lacey AL, Parmenter CD, Tuck C. Additively Manufactured 3D Micro-bioelectrodes for Enhanced Bioelectrocatalytic Operation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:14914-14924. [PMID: 36897174 PMCID: PMC10037242 DOI: 10.1021/acsami.2c20262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The drive toward miniaturization of enzyme-based bioelectronics established a need for three-dimensional (3D) microstructured electrodes, which are difficult to implement using conventional manufacturing processes. Additive manufacturing coupled with electroless metal plating enables the production of 3D conductive microarchitectures with high surface area for potential applications in such devices. However, interfacial delamination between the metal layer and the polymer structure is a major reliability concern, which leads to device performance degradation and eventually device failure. This work demonstrates a method to produce a highly conductive and robust metal layer on a 3D printed polymer microstructure with strong adhesion by introducing an interfacial adhesion layer. Prior to 3D printing, multifunctional acrylate monomers with alkoxysilane (-Si-(OCH3)3) were synthesized via the thiol-Michael addition reaction between pentaerythritol tetraacrylate (PETA) and 3-mercaptopropyltrimethoxysilane (MPTMS) with a 1:1 stoichiometric ratio. Alkoxysilane functionality remains intact during photopolymerization in a projection micro-stereolithography (PμSLA) system and is utilized for the sol-gel reaction with MPTMS during postfunctionalization of the 3D printed microstructure to build an interfacial adhesion layer. This leads to the implementation of abundant thiol functional groups on the surface of the 3D printed microstructure, which can act as a strong binding site for gold during electroless plating to improve interfacial adhesion. The 3D conductive microelectrode prepared by this technique exhibited excellent conductivity of 2.2 × 107 S/m (53% of bulk gold) with strong adhesion between a gold layer and a polymer structure even after harsh sonication and an adhesion tape test. As a proof-of-concept, we examined the 3D gold diamond lattice microelectrode modified with glucose oxidase as a bioanode for a single enzymatic biofuel cell. The lattice-structured enzymatic electrode with high catalytic surface area was able to generate a current density of 2.5 μA/cm2 at 0.35 V, which is an about 10 times increase in current output compared to a cube-shaped microelectrode.
Collapse
Affiliation(s)
- Keyvan Jodeiri
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aleksandra Foerster
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Gustavo F. Trindade
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Jisun Im
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Diego Carballares
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
| | - Roberto Fernández-Lafuente
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
- Center
of Excellence in Bionanoscience Research, Member of the External Scientific
Advisory Board, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Marcos Pita
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
| | - Antonio L. De Lacey
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
| | - Christopher D Parmenter
- Nanoscale
and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Christopher Tuck
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
7
|
Liu Y, Guo J, Zheng X, Tang K, Lin L, Nie M. Biofriendly Waste Shell Powders/Polylactic Acid Composites for Antibacterial Engineering Applications. ACS OMEGA 2022; 7:36672-36678. [PMID: 36278039 PMCID: PMC9583633 DOI: 10.1021/acsomega.2c04779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
With the rapid progress of agriculture and aquaculture, waste shells are harming the environment because of large production, and highly valued recycling is now holding more attention. However, there are still no good ways for simultaneously solving the poor mechanical and antibacterial performance during the recycling process. In this work, antibacterial shell-grafting-Ag powders/polylactic acid (shell-g-Ag/PLA) biocompatible composites, with comparable mechanical properties to industrial polymer counterparts, were prepared via the in situ reduction of Ag ions on surfaces of polydopamine-modified shell powders. The introduction of Ag particles increases the compatibility on the interface and endows the composites with antibacterial performance by inheriting the prominent characteristic from Ag. Without scarifying the mechanical properties by improving the crystallinity and interface, the loaded Ag particles in the composites endowed the composites with valorized antibacterial performance, evidenced by a bacterial inhibition width from 0 to ∼3.29 mm. The biofriendly composites, together with comparable mechanical properties to industrial PLA products, can serve as a sustainable material to be applied in the field of disposable packaging.
Collapse
Affiliation(s)
- Yuansen Liu
- Technology
Innovation Center for Exploitation of Marine Biological Resources,
Third Institute of Oceanography, Ministry
of Natural Resources, Xiamen361005, China
| | - Jiajun Guo
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| | - Xinqing Zheng
- Technology
Innovation Center for Exploitation of Marine Biological Resources,
Third Institute of Oceanography, Ministry
of Natural Resources, Xiamen361005, China
| | - Kexin Tang
- Technology
Innovation Center for Exploitation of Marine Biological Resources,
Third Institute of Oceanography, Ministry
of Natural Resources, Xiamen361005, China
| | - Ling Lin
- Technology
Innovation Center for Exploitation of Marine Biological Resources,
Third Institute of Oceanography, Ministry
of Natural Resources, Xiamen361005, China
| | - Min Nie
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610065, China
| |
Collapse
|
8
|
Zhang Y, Wang Y, Li Z, Yang D, Qiu X. Engineering of Near-Infrared-Activated Lignin-Polydopamine-Nanosilver Composites for Highly Efficient Sterilization. ACS APPLIED BIO MATERIALS 2022; 5:4256-4263. [PMID: 35969409 DOI: 10.1021/acsabm.2c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photothermal synergistic antimicrobial therapy is considered a promising strategy to cope with antibiotic-resistant bacterial infections. In this work, lignin-based polydopamine nanosilver composites (LS-PDA-Ag) were engineered by a two-step process including self-assembly and microwave-assisted reduction. First, sodium lignosulfonate (LS) was not only used as a carrier to disperse polydopamine (PDA) and silver nanoparticles (AgNPs), but also used to reduce Ag+ for producing AgNPs. Second, PDA could promote the reduction of Ag+ and enhance the photothermal effect of AgNPs to further improve antibacterial efficiency. Finally, LS, AgNPs, and PDA complement each other, forming a synergistic photothermal antibacterial mechanism, achieving efficient bacterial killing within a short time. The antibacterial test of LS-PDA-Ag confirmed that 7.6 log10 CFU/mL of Escherichia coli were killed in 10 min under near-infrared irradiation. Furthermore, the LS-PDA-Ag can be blended with waterborne polyurethane to synthesize hybrid films, which also results in rapid sterilization and mechanical performance improvement. Considering the highly effective antibacterial activity of the LS-PDA-Ag composite, this work may provide perspectives on the design of green photothermal antibacterial materials.
Collapse
Affiliation(s)
- Yingchun Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Yalin Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
9
|
Szewczyk J, Aguilar-Ferrer D, Coy E. Polydopamine films: Electrochemical growth and sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Xu Z, Wang T, Liu J. Recent Development of Polydopamine Anti-Bacterial Nanomaterials. Int J Mol Sci 2022; 23:ijms23137278. [PMID: 35806281 PMCID: PMC9266540 DOI: 10.3390/ijms23137278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Polydopamine (PDA), as a mussel-inspired material, exhibits numerous favorable performance characteristics, such as a simple preparation process, prominent photothermal transfer efficiency, excellent biocompatibility, outstanding drug binding ability, and strong adhesive properties, showing great potential in the biomedical field. The rapid development of this field in the past few years has engendered substantial progress in PDA antibacterial materials. This review presents recent advances in PDA-based antimicrobial materials, including the preparation methods and antibacterial mechanisms of free-standing PDA materials and PDA-based composite materials. Furthermore, the urgent challenges and future research opportunities for PDA antibacterial materials are discussed.
Collapse
Affiliation(s)
- Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
| | - Tingting Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Correspondence: (T.W.); (J.L.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China;
- Correspondence: (T.W.); (J.L.)
| |
Collapse
|
11
|
Qi X, Huang Y, You S, Xiang Y, Cai E, Mao R, Pan W, Tong X, Dong W, Ye F, Shen J. Engineering Robust Ag-Decorated Polydopamine Nano-Photothermal Platforms to Combat Bacterial Infection and Prompt Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106015. [PMID: 35191211 PMCID: PMC9008420 DOI: 10.1002/advs.202106015] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 05/02/2023]
Abstract
Polydopamine (PDA) nanoparticles have emerged as an attractive biomimetic photothermal agent in photothermal antibacterial therapy due to their ease of synthesis, good biodegradability, long-term safety, and excellent photostability. However, the therapeutic effects of PDA nanoparticles are generally limited by the low photothermal conversion efficiency (PCE). Herein, PDA@Ag nanoparticles are synthesized via growing Ag on the surface of PDA nanoparticles and then encapsulated into a cationic guar gum (CG) hydrogel network. The optimized CG/PDA@Ag platform exhibits a high PCE (38.2%), which is more than two times higher than that of pure PDA (16.6%). More importantly, the formulated CG/PDA@Ag hydrogel with many active groups can capture and kill bacteria through effective interactions between hydrogel and bacteria, thereby benefiting the antibacterial effect. As anticipated, the designed CG/PDA@Ag system combined the advantages of PDA@Ag nanoparticles (high PCE) and hydrogel (preventing aggregation of PDA@Ag nanoparticles and possessing inherent antibacterial ability) is demonstrated to have superior antibacterial efficacy both in vitro and in vivo. This study develops a facile approach to boost the PCE of PDA for photothermal antibacterial therapy, providing a significant step forward in advancing the application of PDA nano-photothermal agents.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yijing Huang
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Shengye You
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yajing Xiang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Erya Cai
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Ruiting Mao
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wenhao Pan
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Xianqin Tong
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wei Dong
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Fangfu Ye
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Jianliang Shen
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325001China
| |
Collapse
|
12
|
Li Y, Fu R, Duan Z, Zhu C, Fan D. Adaptive Hydrogels Based on Nanozyme with Dual-Enhanced Triple Enzyme-Like Activities for Wound Disinfection and Mimicking Antioxidant Defense System. Adv Healthc Mater 2022; 11:e2101849. [PMID: 34750994 DOI: 10.1002/adhm.202101849] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Indexed: 01/28/2023]
Abstract
Bacterial infection and oxidative stress are two critical problems for chronic infected wound healing. Here, molybdenum disulfide nanosheets (MoS2 NSs) with triple enzyme-like activities are loaded onto carbon nanotubes (CNTs) and incorporated into multifunctional hydrogels aiming to eradicate bacteria and eliminate free radicals. The nanozyme activities of MoS2 are significantly enhanced through CNTs and near-infrared irradiation. The hydrogel exhibits significant antibacterial performance attributed to the peroxidase-like activity (catalyzing hydrogen peroxide (H2 O2 ) into hydroxyl free radicals (•OH)) under acidic conditions, glutathione loss, and photothermal therapy. Additionally, the nanozyme can mimic the superoxide-like activity to transform the superoxide radicals (O2 •- ) into H2 O2 and oxygen (O2 ), then H2 O2 is further depleted into O2 via the catalase-like activity, benefitting from which and •OH scavenging ability, the hydrogel shows excellent scavenging free radical ability in neutral environment and provides abundant O2 for wound healing. The multifunctional hydrogel, crosslinked by dynamic boron ester bonds, exhibits adhesiveness, self-healing, and shape-adaptivity, which can fill the cavity of irregular wounds and promote the nanozyme to play the role with maximum efficiency. The hydrogels notably accelerate the skin reconstruction through killing bacteria, clearing ROS, promoting collagen deposition and angiogenesis.
Collapse
Affiliation(s)
- Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering School of Chemical Engineering Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
13
|
Li Y, Fu R, Duan Z, Zhu C, Fan D. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS 2 dual nanozyme for bacteria-infected wound healing. Bioact Mater 2021; 9:461-474. [PMID: 34820583 PMCID: PMC8586748 DOI: 10.1016/j.bioactmat.2021.07.023] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Bacterial infection, tissue hypoxia and inflammatory response can hinder the infected wound repair process. To mitigate the above issues, tannic acid-chelated Fe-decorated molybdenum disulfide nanosheets (MoS2@TA/Fe NSs) with dual enzyme activities were developed and anchored to a multifunctional hydrogel. The hydrogel exhibited excellent antibacterial ability owing to the combined effects of photothermal therapy (PTT), glutathione (GSH) loss, and the peroxidase (POD)-like activity (catalyse H2O2 into ·OH under acid condition) of MoS2@TA/Fe NSs. Benefitting from the catalase (CAT)-like activity, the hydrogel could decompose H2O2 into O2 at neutral pH to relieve hypoxia and supply adequate O2. POD-like activity was mainly attributed to MoS2 NSs, while CAT-like activity was primarily due to TA/Fe complex. Moreover, MoS2@TA/Fe NSs endowed the hydrogel with outstanding anti-oxidant ability to scavenge redundant reactive oxygen species (ROS) and reactive nitrogen species (RNS) under neutral environment to maintain the balance of antioxidant systems and prevent inflammation. In addition, the hydrogel could inhibit the release of inflammatory factors for the anti-inflammatory property of TA. TA retained partial phenolic hydroxyl groups, which cross-linked the nanosheets to the network structure of the hydrogel and promoted the adhesion of hydrogels. Due to the dynamic boron ester bonds between polyvinyl alcohol (PVA), dextran (Dex), MoS2@TA/Fe, and borax, the hydrogel demonstrated fast self-healing and rapid shape adaptability. This shape-adaptable adhesive hydrogel could fill the whole wound and closely contact the wound, ensuring that it achieved its functions with maximum efficiency. The MoS2@TA/Fe nanozyme-anchored multifunctional hydrogel showed high potential for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.,Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
14
|
Li Y, Fu R, Duan Z, Zhu C, Fan D. Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy. Colloids Surf B Biointerfaces 2021; 210:112230. [PMID: 34871820 DOI: 10.1016/j.colsurfb.2021.112230] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Preventing bacterial infection in situ and accelerating skin generation simultaneously are essentially important for wound healing. Herein, a mussel-inspired Ag nanozyme-based bilayer hydrogel is constructed to address the above concerns. The bilayer hydrogel is composed of a layer with large pores absorbing the wound exudate and allowing oxygen exchange and a layer with small pores keeping the wound moist and preventing bacterial invasion. Benefitting from the polydopamine (PDA) coating-reduced Ag nanoparticles (AgNPs), the hydrogel exhibits high near infrared (NIR) absorption at 808 nm to generate hyperthermia and NIR-enhanced peroxidase (POD-like) activity to produce hydroxyl radicals (•OH), which endows the hydrogel with excellent antibacterial properties when combined with the released Ag+. In addition, the hydrogel presents adhesiveness due to the catechol group on a PDA molecule. The in vivo test results demonstrate that the bilayer hydrogel can accelerate infected skin generation by facilitating collagen deposition, decreasing tumor necrosis factor-α secretion, and promoting vascular endothelial growth factor expression.
Collapse
Affiliation(s)
- Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
15
|
Tran TTV, Vo DN, Nguyen ST, Luu SDN, Mofijur M, Vu CM. In situ sintered silver decorated
3D
structure of cellulose scaffold for highly thermoconductive electromagnetic interference shielding epoxy nanocomposites. J Appl Polym Sci 2021. [DOI: 10.1002/app.51193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thi Tuong Vi Tran
- Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Dai‐Viet N. Vo
- College of Medical and Health Science Asia University Taichung Taiwan
| | - Son Thanh Nguyen
- Department of Creative Engineering National Institute of Technology, Kushiro College Kushiro Japan
| | - Son D. N. Luu
- Institute of Research and Development Duy Tan University Danang Vietnam
| | - M. Mofijur
- School of Information, Systems, and Modelling, Faculty of Engineering and Information Technology University of Technology Sydney Ultimo New South Wales Australia
- Mechanical Engineering Department Prince Mohammad Bin Fahad University Al Khobar Saudi Arabia
| | - Canh Minh Vu
- Laboratory of Advanced Materials Chemistry Advanced Institute of Materials Science, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
16
|
Wan M, Zhao H, Peng L, Zhao Y, Sun L. Facile One-Step Deposition of Ag Nanoparticles on SiO 2 Electrospun Nanofiber Surfaces for Label-Free SERS Detection and Antibacterial Dressing. ACS APPLIED BIO MATERIALS 2021; 4:6549-6557. [PMID: 35006892 DOI: 10.1021/acsabm.1c00674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fabrication of highly active and free-standing surface-enhanced Raman scattering (SERS) substrates in a simple and low-cost manner has been a crucial and urgent challenge in recent years. Herein, SiO2 nanofiber substrates modified with size-tunable Ag nanoparticles were prepared by the combination of electrospinning and in situ chemical reduction. The results demonstrate the presence and uniform adsorption of Ag nanoparticles on the SiO2 matrix surface. The free-standing composite nanofibrous substrates show high-performance SERS response toward 4-mercaptophenol and 4-mercaptobenzoic acid, and the detection limit can be as low as 10-10 mol/L. Most importantly, the as-prepared substrate as a versatile SERS platform can realize label-free detection of bio-macromolecules of bacteria, i.e., Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the substrates also possess outstanding antibacterial activities against S. aureus and E. coli. Briefly, the significance of this study is that size-tunable Ag nanoparticles can be decorated on SiO2 nanofiber surfaces with triethanolamine as a bridging and reducing agent through a one-pot reaction, and the as-prepared nanofibrous membranes are expected to act as a candidate for label-free SERS detection as well as antibacterial dressing.
Collapse
Affiliation(s)
- Menghui Wan
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Haodong Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Lichao Peng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Yanbao Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| |
Collapse
|
17
|
Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, Li Y, Gu Z. Polydopamine antibacterial materials. MATERIALS HORIZONS 2021; 8:1618-1633. [PMID: 34846495 DOI: 10.1039/d0mh01985b] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the development of polydopamine (PDA) has demonstrated numerous excellent performances in free radical scavenging, UV shielding, photothermal conversion, and biocompatibility. These unique properties enable PDA to be widely used as efficient antibacterial materials for various applications. Accordingly, PDA antibacterial materials mainly include free-standing PDA materials and PDA-based composite materials. In this review, an overview of PDA antibacterial materials is provided to summarize these two types of antibacterial materials in detail, including the fabrication strategies and antibacterial mechanisms. The future development and challenges of PDA in this field are also presented. It is hoped that this review will provide an insight into the future development of antibacterial functional materials based on PDA.
Collapse
Affiliation(s)
- Yu Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Preparation of Silver-Plated Para-Aramid Fiber by Employing Low-Temperature Oxygen Plasma Treatment and Dopamine Functionalization. COATINGS 2019. [DOI: 10.3390/coatings9100599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Direct electroless silver plating of para-aramid (PPTA) is difficult due to its extremely low surface chemical energy. In order to facilitate the deposition of silver nanoparticles and to enhance the washing fastness, oxygen plasma treatment and dopamine modification were conducted before silver plating of PPTA fibers. Various techniques including scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA) were used to characterize the surface morphology, chemical composition and thermal stability of the silver-plated PPTA fibers. Electrical resistance and silver content of the silver-coated PPTA fibers before and after standard washing were also studied. The results showed that silver nanoparticles were successfully coated onto the surface of PPTA fibers with and without plasma treatment, but the coating continuity and the electrical conductivity of the silver-coated PPTA fibers were greatly enhanced with the assistance of plasma treatment. It was also demonstrated that the washing fastness of silver-coated PPTA fibers was improved after plasma treatment as indicated by electrical resistance and continuity of the silver nanoparticles after various washing cycles. It was found that the electrical resistance of plasma-treated PPTA-PDA/Ag fibers prepared at an AgNO3 concentration of 20 g/L reached 0.89 Ω/cm and increased slightly to 0.94 Ω/cm after 10 standard washing cycles. The silver-coated PPTA fibers also showed stable electrical conductivity under 250 repeated stretching-releasing cycles at a strain of 3%.
Collapse
|
20
|
Du J, Jing C. One-step fabrication of dopamine-inspired Au for SERS sensing of Cd2+ and polycyclic aromatic hydrocarbons. Anal Chim Acta 2019; 1062:131-139. [DOI: 10.1016/j.aca.2019.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 11/26/2022]
|
21
|
Dou J, Zhu G, Hu B, Yang J, Ge Y, Li X, Liu J. Wall thickness-tunable AgNPs-NCNTs for hydrogen peroxide sensing and oxygen reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Wang L, Wu W, Drummer D, Ma R, Liu Z, Shen W. Study on thermal conductive PA6 composites with 3-dimensional structured boron nitride hybrids. J Appl Polym Sci 2019. [DOI: 10.1002/app.47630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Wang
- Sino-German Joint Research Centre of Advanced Materials; School of Materials and Engineering, East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Wei Wu
- Sino-German Joint Research Centre of Advanced Materials; School of Materials and Engineering, East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Dietmar Drummer
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen 91058 Germany
| | - Renbo Ma
- Sino-German Joint Research Centre of Advanced Materials; School of Materials and Engineering, East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Zhaowen Liu
- Sino-German Joint Research Centre of Advanced Materials; School of Materials and Engineering, East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Wanting Shen
- Sino-German Joint Research Centre of Advanced Materials; School of Materials and Engineering, East China University of Science and Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
23
|
Jiang L, Zhou Y, Guo Y, Jiang Z, Chen S, Ma J. Preparation of silver nanoparticle functionalized polyamide fibers with antimicrobial activity and electrical conductivity. J Appl Polym Sci 2019. [DOI: 10.1002/app.47584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Liang Jiang
- College of Textiles & Clothing Qingdao University Qingdao Shandong China
- Industrial Research Institute of Nonwovens & Technical Textiles Qingdao University Qingdao Shandong China
| | - Yanfen Zhou
- College of Textiles & Clothing Qingdao University Qingdao Shandong China
- Industrial Research Institute of Nonwovens & Technical Textiles Qingdao University Qingdao Shandong China
| | - Ya Guo
- College of Textiles & Clothing Qingdao University Qingdao Shandong China
| | - Zhiqing Jiang
- College of Textiles & Clothing Qingdao University Qingdao Shandong China
| | - Shaojuan Chen
- College of Textiles & Clothing Qingdao University Qingdao Shandong China
| | - Jianwei Ma
- College of Textiles & Clothing Qingdao University Qingdao Shandong China
- Industrial Research Institute of Nonwovens & Technical Textiles Qingdao University Qingdao Shandong China
| |
Collapse
|
24
|
Yang D, Kong X, Ni Y, Ruan M, Huang S, Shao P, Guo W, Zhang L. Improved Mechanical and Electrochemical Properties of XNBR Dielectric Elastomer Actuator by Poly(dopamine) Functionalized Graphene Nano-Sheets. Polymers (Basel) 2019; 11:E218. [PMID: 30960201 PMCID: PMC6419049 DOI: 10.3390/polym11020218] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
In this work, graphene nano-sheets (GNS) functionalized with poly(dopamine) (PDA) (denoted as GNS-PDA) were dispersed in a carboxylated nitrile butadiene rubber (XNBR) matrix to obtain excellent dielectric composites via latex mixing. Because hydrogen bonds were formed between ⁻COOH groups of XNBR and phenolic hydroxyl groups of PDA, the encapsulation of GNS-PDA around XNBR latex particles was achieved, and led to a segregated network structure of filler formed in the GNS-PDA/XNBR composite. Thus, the XNBR composite filled with GNS-PDA showed improved filler dispersion, enhanced dielectric constant and dielectric strength, and decreased conductivity compared with the XNBR composite filled with pristine GNS. Finally, the GNS-PDA/XNBR composite displayed an actuated strain of 2.4% at 18 kV/mm, and this actuated strain was much larger than that of pure XNBR (1.3%) at the same electric field. This simple, environmentally friendly, low-cost, and effective method provides a promising route for obtaining a high-performance dielectric elastomer with improved mechanical and electrochemical properties.
Collapse
Affiliation(s)
- Dan Yang
- Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing 102617, China.
| | - Xinxin Kong
- Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing 102617, China.
| | - Yufeng Ni
- Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing 102617, China.
| | - Mengnan Ruan
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing 102617, China.
- Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shuo Huang
- Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing 102617, China.
| | - Puzhen Shao
- Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Wenli Guo
- Department of Material Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing 102617, China.
| | - Liqun Zhang
- Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
25
|
Yang Y, Huang Q, Payne GF, Sun R, Wang X. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. NANOSCALE 2019; 11:725-732. [PMID: 30565620 DOI: 10.1039/c8nr07123c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is great interest in extending cellulosic platforms to applications in flexible, lightweight, low-cost and sustainable electronics. The critical need is the development of methods to confer electronic properties to these materials platforms (i.e., paper and fabrics). Here we report a highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by a simple low-cost and scalable wet-processing method to coat a Cu nanoparticle (NP) layer on common cellulose paper, where polydopamine adhesion and electroless deposition were used to yield highly conductive paper with a sheet resistance as low as 0.01 Ω sq-1. This Cu/cellulose paper has excellent stability because of the strong adhesion between Cu NPs and cellulose, and because the methods are sufficiently mild to prevent damage to the paper substrate. This fabrication method results in the controlled deposition of Cu NPs and yields Cu/cellulose paper with highly hydrophobic and self-cleaning properties, high photothermal conversion efficiency, and excellent electromagnetic interface (EMI) shielding effectiveness. This high-performance Cu/cellulose paper could have promising application potential for a range of emerging applications in flexible electronics and packaging.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
26
|
Chen T, Xu Y, Wei S, Li A, Huang L, Liu J. A signal amplification system constructed by bi-enzymes and bi-nanospheres for sensitive detection of norepinephrine and miRNA. Biosens Bioelectron 2018; 124-125:224-232. [PMID: 30388565 DOI: 10.1016/j.bios.2018.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
Achieving the enhanced sensitivity and stability is always the pursuit for the fabrication of enzymatic biosensors. However, their sensitivity was still restricted by the fluctuant detection target (e.g. concentration), complex detection environment and limited recognition capability of enzymes. Herein, an effective and facile approach was designed to construct a bi-enzymatic and bi-nanospherical signal amplification system for fabrication of biosensors based on the designed polydopamine(PDA)-laccase@Au-glucose dehydrogenase. Therein, laccase-catalytic polymerized PDA nanoparticles (NPs) provided the supporting matrix for immobilization of laccase and AuNPs. The AuNPs with good conductivity and large surface area were used not only as a platform for enhanced loading capacity of glucose dehydrogenase but also as a conducting medium for electron transfer acceleration between enzymes and electrode. Moreover, the coordinated catalysis of bi-enzymes (laccase and glucose dehydrogenase) could avoid the fluctuated concentration of detection target (e.g. norepinephrine), while the application of bi-nanospheres loaded with large amount of enzymes could effectively amplify the signal of biosensors. Taking advantages of these merits, the as-prepared biosensors showed preeminent reproducibility, larger detection range from 0.5 nM to 0.5 μM, and lower detection limit of 0.07 nM (S/N = 3) for the norepinephrine detection. Besides, the constructed PDA-laccase@Au-glucose dehydrogenase was also successfully applied as the sensing probes for the detection of microRNA (miRNA), especially for single-nucleotide mismatched miRNA via specific recognition.
Collapse
Affiliation(s)
- Tao Chen
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Shuang Wei
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Lei Huang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China; College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
27
|
|
28
|
Xie Y, Zheng Y, Fan J, Wang Y, Yue L, Zhang N. Novel Electronic-Ionic Hybrid Conductive Composites for Multifunctional Flexible Bioelectrode Based on in Situ Synthesis of Poly(dopamine) on Bacterial Cellulose. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22692-22702. [PMID: 29895145 DOI: 10.1021/acsami.8b05345] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
With the rapid development of the wearable detector and medical devices, flexible biosensing materials have received more and more attention. In this work, a novel flexible and conductive biocompatible composite with electronic and ionic bioconductive ability was demonstrated to fabricate a new flexible bioelectrode used for electrophysiological signal detection. This composite was prepared by the in situ self-polymerization of dopamine on the nanofiber of bacterial cellulose (BC) under the neutral pH condition. By using this method, poly(dopamine) (PDA) could form a uniform and continuous wrapped layer on the BC nanofiber that can prevent the aggregation of PDA caused by rapid polymerization under the conventional alkaline condition. In addition, a fabricated film with a special structure is suitable for the transportation of electrons and ions existing in it. Moreover, the flexible conductive film (FCF) reveals an extremely tensile strength, which is 2 times higher than the pure BC in addition to a high electric conductivity, which reaches a value of 10-3 S/cm with a high PDA content. Furthermore, the result of electrocardiogram signal testing shows that the antibacterial property of the FCF bioelectrode has an excellent stability, which is comparable to or better than the commercially available electrode. The BC/PDA-FCF provides a platform for the creation of flexible conductive biomaterials for wearable response devices.
Collapse
Affiliation(s)
- Yajie Xie
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Yudong Zheng
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Jinsheng Fan
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Yansen Wang
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Lina Yue
- School of Environmental Engineering , North China Institute of Science and Technology , Yanjiao Beijing 101601 , PR China
| | - Nannan Zhang
- Shenzhen Institues of Adavanced Technology, Chinese Academy of Science , Shenzhen 518055 , PR China
| |
Collapse
|
29
|
Ryu JH, Messersmith PB, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7523-7540. [PMID: 29465221 PMCID: PMC6320233 DOI: 10.1021/acsami.7b19865] [Citation(s) in RCA: 860] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polydopamine is one of the simplest and most versatile approaches to functionalizing material surfaces, having been inspired by the adhesive nature of catechols and amines in mussel adhesive proteins. Since its first report in 2007, a decade of studies on polydopamine molecular structure, deposition conditions, and physicochemical properties have ensued. During this time, potential uses of polydopamine coatings have expanded in many unforeseen directions, seemingly only limited by the creativity of researchers seeking simple solutions to manipulating surface chemistry. In this review, we describe the current state of the art in polydopamine coating methods, describe efforts underway to uncover and tailor the complex structure and chemical properties of polydopamine, and identify emerging trends and needs in polydopamine research, including the use of dopamine analogs, nitrogen-free polyphenolic precursors, and improvement of coating mechanical properties.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Carbon Fusion Engineering, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, California 94720-1760, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Daejeon 34141, South Korea
- Center for Nature-inspired Technology (CNiT), KAIST Institute of NanoCentury, 291 University Road, Daejeon 34141, South Korea
| |
Collapse
|
30
|
Zhang H, Xu H. Electrospun nanofibers-based online micro-solid phase extraction for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine. J Chromatogr A 2017; 1521:27-35. [DOI: 10.1016/j.chroma.2017.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/04/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
|
31
|
Zhao MX, Li J, Gao X. Gradient Coating of Polydopamine via CDR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6727-6731. [PMID: 28657319 DOI: 10.1021/acs.langmuir.7b01463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surfaces with gradient properties are of central importance for a number of chemical and biological processes. Here, we report rapid generation of a polydopamine (PDA) gradient on hydrophobic surfaces by a simple, low cost, and general technology, cyclic draining-replenishing (CDR). Due to the unique surface chemistry of PDA, it enables continuous and precise control of surface wettability and subsequent deposition of organic and inorganic compounds. Using kanamycin as a model compound, we show that the gradient PDA membrane potentially can be used to prepare minimum inhibitory concentration (MIC) test strips for quantifying resistance of antimicrobial agents from microorganisms. Because CDR is experimentally simple, scalable, fast, and does not require specialized reagents or instruments, we envision this platform can be easily adopted to create a variety of functional surfaces.
Collapse
Affiliation(s)
- Mei-Xia Zhao
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University , Kaifeng 475004, China
| | - Junwei Li
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Biswas P, Cho SR, Kim JW, Baek SD, Myoung JM. Improved UV response of ZnO nanotubes by resonant coupling of anchored plasmonic silver nanoparticles. NANOTECHNOLOGY 2017; 28:225502. [PMID: 28402290 DOI: 10.1088/1361-6528/aa6ce0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, plasmonic silver (Ag) nanoparticle-(NP) anchored ZnO nanorods (NRs) and nanotube-(NT) based UV photodetectors are demonstrated. Here, Ag NPs are synthesized and anchored by using a room-temperature photochemical method by exposing the precursor solution in UV radiation. In order to achieve a stronger surface plasmon resonance (SPR) and minimum agglomeration, the photochemical method is optimized with a precursor concentration of 5 mmol, a UV intensity of 0.4 mW · cm-2, and an exposure time of 30 min. An asymmetry around 380 nm in the absorption spectra of the NP solution indicates the presence of plasmonic resonance in that region. Upon anchoring the Ag NPs, ZnO NRs show enhanced band edge emission (380-400 nm) and the emission is further significantly increased in Ag NP-anchored ZnO NTs. The on/off ratio and photoresponse properties of the UV photodetectors are enhanced significantly after anchoring Ag NPs on the ZnO nanostructures. It is believed that the near-field coupling of SPR causes an optical enhancement of ZnO, whereas the bridging effect and hot-electron transfer to the conduction band of ZnO by plasmonic Ag NPs, anchored in close proximity, gives rise to a faster response of the photodetectors.
Collapse
Affiliation(s)
- Pranab Biswas
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Li D, Shen H, Cai C, Sun T, Zhao Y, Chen L, Zhao N, Xu J. Fabrication of Conductive Silver Microtubes Using Natural Catkin as a Template. ACS OMEGA 2017; 2:1738-1745. [PMID: 31457537 PMCID: PMC6641149 DOI: 10.1021/acsomega.7b00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/20/2017] [Indexed: 05/24/2023]
Abstract
Catkin, a natural hollow fiber, is used as a template to fabricate light, flexible, and electrically conductive silver microtubes with a high aspect ratio. The template is functionalized with tannic acid (TA)-Fe coordination complexes. Because of the metal ion chelating ability and reducibility of TA, silver nanoparticles (Ag NPs) can be formed in situ on the fiber's surface. The as-formed Ag NPs can act as nucleation sites in subsequent electroless silver plating, leading to the formation of a compact and uniform silver coating on the microtube. The coating is constructed by densely packed Ag NPs of only 15 ± 5 nm in diameter. Because of the tight accumulation and small size of the Ag NPs, the resulting silver-coated microtubes, without any post-treatment, show an electrical resistivity of 1500 mΩ·cm at a bulk density of 0.6 g·cm-3. We find that the in situ formed nucleation sites and the stirring speed in the electroless plating play important roles in the formation of a silver coating with a high electrical conductivity. This method may be extended to fabricate conductive nanocoatings on other substrates.
Collapse
Affiliation(s)
- Dongdong Li
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Materials Science and Engineering, Tianjin
Polytechnic University, West Binshui Road No. 399, Xiqing District, Tianjin 300387, P. R.
China
- Beijing
National Laboratory for Molecular Sciences, Laboratory of Polymer
Physics and Chemistry, Institute of Chemistry,
Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, P. R. China
| | - Heng Shen
- Beijing
National Laboratory for Molecular Sciences, Laboratory of Polymer
Physics and Chemistry, Institute of Chemistry,
Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, P. R. China
| | - Chao Cai
- Beijing
National Laboratory for Molecular Sciences, Laboratory of Polymer
Physics and Chemistry, Institute of Chemistry,
Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, P. R. China
| | - Tongbing Sun
- Beijing
National Laboratory for Molecular Sciences, Laboratory of Polymer
Physics and Chemistry, Institute of Chemistry,
Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, P. R. China
| | - Yiping Zhao
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Materials Science and Engineering, Tianjin
Polytechnic University, West Binshui Road No. 399, Xiqing District, Tianjin 300387, P. R.
China
| | - Li Chen
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Materials Science and Engineering, Tianjin
Polytechnic University, West Binshui Road No. 399, Xiqing District, Tianjin 300387, P. R.
China
| | - Ning Zhao
- Beijing
National Laboratory for Molecular Sciences, Laboratory of Polymer
Physics and Chemistry, Institute of Chemistry,
Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, P. R. China
| | - Jian Xu
- Beijing
National Laboratory for Molecular Sciences, Laboratory of Polymer
Physics and Chemistry, Institute of Chemistry,
Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, P. R. China
| |
Collapse
|
34
|
Vo DT, Sabrina S, Lee CK. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:544-551. [DOI: 10.1016/j.msec.2016.12.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 11/28/2022]
|
35
|
Fazli Y, Shariatinia Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:641-652. [DOI: 10.1016/j.msec.2016.10.048] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/27/2016] [Accepted: 10/23/2016] [Indexed: 11/30/2022]
|
36
|
Wang L, Shi Y, Sa R, Ning N, Wang W, Tian M, Zhang L. Surface Modification of Aramid Fibers by Catechol/Polyamine Codeposition Followed by Silane Grafting for Enhanced Interfacial Adhesion to Rubber Matrix. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03177] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Wang
- Key
Laboratory
of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
- Engineering Research
Center of Elastomer Materials on Energy Conservation and Resources
Ministry of Education, Beijing 100029, PR China
| | - Yongxiang Shi
- Key
Laboratory
of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
- Engineering Research
Center of Elastomer Materials on Energy Conservation and Resources
Ministry of Education, Beijing 100029, PR China
| | - Rina Sa
- Key
Laboratory
of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Nanying Ning
- Key
Laboratory
of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wencai Wang
- Key
Laboratory
of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ming Tian
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Engineering Research
Center of Elastomer Materials on Energy Conservation and Resources
Ministry of Education, Beijing 100029, PR China
| | - Liqun Zhang
- Key
Laboratory
of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
- Engineering Research
Center of Elastomer Materials on Energy Conservation and Resources
Ministry of Education, Beijing 100029, PR China
| |
Collapse
|
37
|
Zhao L, Chen D, Hu W. Patterning of Metal Films on Arbitrary Substrates by Using Polydopamine as a UV-Sensitive Catalytic Layer for Electroless Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5285-90. [PMID: 27181020 DOI: 10.1021/acs.langmuir.6b01118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Patterning metal films on various substrates is essentially important and yet challenging for developing a wide variety of innovative devices. We herein report a versatile approach to pattern metal (gold, silver, or copper) films on arbitrary substrates by using the bio-inspired polydopamine (PDA) thin film as a UV-sensitive adhesive layer for electroless deposition. The PDA film is able to be formed on virtually any solid surfaces under mild condition, and its rich catechol groups allow for electroless deposition of metal films with high adhesion stability. Upon UV irradiation, spatially selective oxidation of PDA film occurs and the local metal deposition is inhibited, thus facilitating successful patterning of metal films. Considering its versatility and simplicity, this strategy may demonstrate great applications in manufacturing various innovative devices.
Collapse
Affiliation(s)
- Lei Zhao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University , Chongqing 400715, China
| | - Daqun Chen
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University , Chongqing 400715, China
| | - Weihua Hu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University , Chongqing 400715, China
| |
Collapse
|
38
|
Zhang H, He Y, Zhang J, Ma L, Li Y, Wang J. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Hu J, Wu S, Cao Q, Zhang W. Synthesis of core–shell structured alumina/Cu microspheres using activation by silver nanoparticles deposited on polydopamine-coated surfaces. RSC Adv 2016. [DOI: 10.1039/c6ra09106g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile and efficient approach to preparing alumina/Cu composite microspheres with silver-decorated polydopamine coating is proposed.
Collapse
Affiliation(s)
- Jiaxun Hu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Shuqing Wu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Qin Cao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Wenda Zhang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
40
|
Yang D, Ruan M, Huang S, Wu Y, Li S, Wang H, Ao X, Liang Y, Guo W, Zhang L. Dopamine and silane functionalized barium titanate with improved electromechanical properties for silicone dielectric elastomers. RSC Adv 2016. [DOI: 10.1039/c6ra19210f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A combination of bio-inspired poly(dopamine) deposition and silane grafting is proposed to functionalize bariumtitanate to improve the electromechanical properties of silicone dielectric elastomers.
Collapse
|
41
|
Yi M, Sun H, Zhang H, Deng X, Cai Q, Yang X. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:742-9. [DOI: 10.1016/j.msec.2015.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
|
42
|
Park HH, Zhang X, Lee KW, Sohn A, Kim DW, Kim J, Song JW, Choi YS, Lee HK, Jung SH, Lee IG, Cho YD, Shin HB, Sung HK, Park KH, Kang HK, Park WK, Park HH. Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission. NANOSCALE 2015; 7:20717-20724. [PMID: 26601993 DOI: 10.1039/c5nr05877e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel technique for the selective photochemical synthesis of silver (Ag) nanoparticles (NPs) on ZnO nanorod arrays is established by combining ultraviolet-assisted nanoimprint lithography (UV-NIL) for the definition of growth sites, hydrothermal reaction for the position-controlled growth of ZnO nanorods, and photochemical reduction for the decoration of Ag NPs on the ZnO nanorods. During photochemical reduction, the size distribution and loading of Ag NPs on ZnO nanorods can be tuned by varying the UV-irradiation time. The photochemical reduction is hypothesized to facilitate the adsorbed citrate ions on the surface of ZnO, allowing Ag ions to preferentially form Ag NPs on ZnO nanorods. The ratio of visible emission to ultraviolet (UV) emission for the Ag NP-decorated ZnO nanorod arrays, synthesized for 30 min, is 20.5 times that for the ZnO nanorod arrays without Ag NPs. The enhancement of the visible emission is believed to associate with the surface plasmon (SP) effect of Ag NPs. The Ag NP-decorated ZnO nanorod arrays show significant SP-induced enhancement of yellow-green light emission, which could be useful in optoelectronic applications. The technique developed here requires low processing temperatures (120 °C and lower) and no high-vacuum deposition tools, suitable for applications such as flexible electronics.
Collapse
Affiliation(s)
- Hyeong-Ho Park
- Technology Development Division, Korea Advanced Nanofab Center (KANC), Suwon 443270, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li L, Wang X, Liu G, Wang Z, Wang F, Guo X, Wen Y, Yang H. Reproducible preparation of a stable polypyrrole-coated-silver nanoparticles decorated polypyrrole-coated-polycaprolactone-nanofiber-based cloth electrode for electrochemical sensor application. NANOTECHNOLOGY 2015; 26:445704. [PMID: 26469539 DOI: 10.1088/0957-4484/26/44/445704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A piece of conductive cloth has been successfully constructed from polypyrrole-coated silver nanoparticle (Ag@PPy) composites decorated on electrospun polycaprolactone (PCL) nanofibers that formed the core-shell structure of Ag@PPy/PCL@PPy via a photo-induced one-step redox reaction. The photochemical reaction method both accelerated the rate of formation of silver nanoparticles (Ag NPs) and enhanced the dispersion of Ag NPs at the surface of PCL@PPy film. The resulting Ag@PPy/PCL@PPy-based cloth was flexible enough to be cut and pasted onto a glass carbon electrode for the preparation of a biosensor. The resulting biosensor showed good electrochemical activity toward the reduction of H2O2 with low detection limit down to 1 μM (S/N = 3) and wide linear detection ranging from 0.01 mM to 3.5 mM (R(2) = 0.990). This sensor has been applied to detect the trace H2O2 residual in milk. The cloth electrode has been proved to exhibit long-term stability, high selectivity, and excellent reproducibility.
Collapse
Affiliation(s)
- Li Li
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gao Y, Sun Z, Sun L, Wang C, Wang S, Yuan J, Zang L, Yan P. High photoelectric PPV/PVA/Ag composite nanofibers by co-electrospinning. JOURNAL OF POLYMER ENGINEERING 2015. [DOI: 10.1515/polyeng-2014-0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly(phenylene vinylene)/polyvinyl alcohol/Ag (PPV/PVA/Ag) composite nanofibers with excellent photoelectric properties were prepared by coaxial electrospinning using PPV/PVA as the shell and Ag nanoparticles (NPs) as the core, Ag NPs aqueous solution was prepared by the reduction method. The results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that Ag NPs are of a face-centered cubic structure, with an average diameter of 46 nm and the composite nanofibers have uniform and continuous morphology. With increasing Ag content, the diameters of the composite nanofibers decreased from 653 nm to 250 nm. The X-ray diffraction (XRD) patterns verified that in the composite nanofibers, the Ag NPs are not transformed. In the photoluminescence spectra, the PPV/PVA/Ag composite nanofibers presented red-shift compared with PPV/PVA nanofibers. Under illumination, the as-prepared PPV/PVA/Ag composite nanofibers exhibited relatively high photocurrent intensity.
Collapse
|
45
|
Xiong S, Wang Y, Zhu J, Yu J, Hu Z. Mussel-adhesive-inspired fabrication of multifunctional silver nanoparticle assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5504-5512. [PMID: 25919224 DOI: 10.1021/acs.langmuir.5b00820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The assembly of metal nanoparticles (NPs) has attracted a great deal of attention recently because of their collective properties that could not be exhibited by individual NPs. Here a one-step approach was reported for the fabrication of spherical silver NP assemblies (AgNAs). The formation of AgNAs simply included the stirring of silver ammonia and 3,4-dihydroxy-l-phenylalanine (DOPA) in aqueous solution at room temperature, in which DOPA acted as a reductant for AgNPs first because of its reducing ability and then directed the assembly of AgNPs into AgNAs. The AgNAs exhibited hierarchical structure with controllable sizes ranging from 180 to 610 nm by adjusting the concentrations of reagents. The two individual components, AgNPs and polyDOPA, also allowed AgNAs with multiple functions as demonstrated in this study of durable catalytic activity, high SERS sensitivity, and good antioxidant properties. The thin polyDOPA layer coated on AgNAs further offered the opportunity to modify the surface of AgNAs. The results presented here may provide a green and facile approach to designing multifunctional NP assemblies.
Collapse
Affiliation(s)
- Shuqiang Xiong
- †State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and ‡College of Material Science and Engineering, Donghua University, 201620 Shanghai, PR China
| | - Yan Wang
- †State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and ‡College of Material Science and Engineering, Donghua University, 201620 Shanghai, PR China
| | - Jing Zhu
- †State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and ‡College of Material Science and Engineering, Donghua University, 201620 Shanghai, PR China
| | - Junrong Yu
- †State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and ‡College of Material Science and Engineering, Donghua University, 201620 Shanghai, PR China
| | - Zuming Hu
- †State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and ‡College of Material Science and Engineering, Donghua University, 201620 Shanghai, PR China
| |
Collapse
|
46
|
Chen HT, Lin HL, Chen IG, Kuo C. Conducting silver networks based on electrospun poly(methyl methacrylate) and silver trifluoroacetate. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9479-85. [PMID: 25920511 DOI: 10.1021/acsami.5b00428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Silver networks with high transmittance and low resistance were prepared on transparent substrates via a polymer-assisted electrospinning technique and post treatments. Nonaqueous media containing poly(methyl methacrylate) (PMMA) and silver trifluoroacetate (STA) were formulated and electrospun as polymer/metal-precursor nanofibers with as-spun fiber diameters ranging from 640 to 3000 nm. Nanofibers randomly deposited on transparent substrates formed a plane scaffold, which served as the raw material for the conducting silver network. Post-thermal treatment at a moderate temperature of 100 °C reduced the STA precursors to silver nanoparticles (Ag NPs). Further heat treatment at elevated temperatures thermally decomposed the organic polymer and triggered sintering of the Ag NPs into a connected one-dimensional (1D) domain. Silver fibers with diameters ranging between 800 and 4500 nm formed continuous conducting networks on the substrate surface. The sheet resistances of these conducting silver networks revealed strong correlations with the original STA/PMMA ratios and with the silver network morphologies after the polymers were removed. The material fabrication was carefully investigated, and the surface plasmon resonances (SPRs), fiber morphologies, and electrical and optical properties of the products were examined. The optimized conducting silver networks exhibited sheet resistances as low as 15 Ω/sq and diffusive optical transparencies of approximately 54%.
Collapse
Affiliation(s)
- Hung-Tao Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsiu-Ling Lin
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - In-Gann Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Changshu Kuo
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
47
|
Fu Y, Zhao D, Yao P, Wang W, Zhang L, Lvov Y. Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8156-8165. [PMID: 25853635 DOI: 10.1021/acsami.5b00993] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel aging-resistant styrene-butadiene rubber (SBR) composite is prepared using the antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine (4010NA) loaded inside of halloysite clay nanotubes and used as filler. Loading the antioxidant inside of halloysite allows for its sustained release for nine months in the rubber matrix. By utilizing modified halloysite, the antioxidant concentration in this rubber nanoformulation is tripled without causing "blooming" defects. Furthermore, the halloysite is silanized to enhance its miscibility with rubber. The aging resistance of SBR-halloysite composites is studied by comparing the mechanical properties before and after thermal-oxidative aging. A seven-day test at 90 °C shows preservation of mechanical properties, and no 4010NA blooming is observed, even after one month. Styrene-butadiene rubber with 27 wt % halloysite loaded with 4010NA shows marked increase in aging resistance and promising future of halloysite as a functional rubber filler.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Lvov
- §Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| |
Collapse
|
48
|
Wang L, Hu L, Gao S, Zhao D, Zhang L, Wang W. Bio-inspired polydopamine-coated clay and its thermo-oxidative stabilization mechanism for styrene butadiene rubber. RSC Adv 2015. [DOI: 10.1039/c4ra11904e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In situ thermal-oxidative ageing tests by electron spin resonance (ESR) evidence that polydopamine (PDA) deposited onto clay can act as excellent radical-scavenger and thus significantly diminish the thermolysis of styrene butadiene rubber (SBR).
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Linjia Hu
- State Key Laboratory of Organic-Inorganic Composites
- Beijing 100029
- China
| | - Shangbing Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Detao Zhao
- State Key Laboratory of Organic-Inorganic Composites
- Beijing 100029
- China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wencai Wang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing 100029
- China
| |
Collapse
|
49
|
Yao S, Li Y, Zhou Z, Yan H. Graphene oxide-assisted preparation of poly(vinyl alcohol)/carbon nanotube/reduced graphene oxide nanofibers with high carbon content by electrospinning technology. RSC Adv 2015. [DOI: 10.1039/c5ra15985g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrospun PVA/RGO/MWCNT nanofibers with high carbon content prepared via a well-dispersed MWCNT/PVA solution with a assistance of GO have a relatively high electrical conductivity.
Collapse
Affiliation(s)
- Song Yao
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Yanbao Li
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Zhihang Zhou
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Haichen Yan
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| |
Collapse
|
50
|
Zhan S, Zhu D, Ren G, Shen Z, Qiu M, Yang S, Yu H, Li Y. Coaxial-electrospun magnetic core-shell Fe@TiSi nanofibers for the rapid purification of typical dye wastewater. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16841-16850. [PMID: 25226354 DOI: 10.1021/am505751z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Magnetic mesoporous γ-Fe2O3@Ti0.9Si0.1O2 (abbreviated as Fe@TiSi) core-shell nanofibers were prepared using sol-gel chemistry combined with coaxial-electrospinning technology by adjusting the inner and outer feed ratios. The properties of these novel core-shell nanofibers were characterized by SEM, HRTEM, XRD, FTIR, BET, XPS, and UV-vis spectra. To evaluate the chemical properties of the nanofibers for cleaning typical organic wastewater, methylene blue (MB) was used as a target organic pollutant and was cleaned under irradiation with sunlight and visible light. The Fe@TiSi hierarchical nanofibers composed of a 1:10 feed ratio displayed a mesoporous structure and showed the highest photocatalytic activity for the degradation of MB in water. Furthermore, 86.8% and 71.1% of the MB, which was added at an original concentration of 1 mg/L, was removed after 60 min of irradiation with sunlight and visible light in the presence of Fe@TiSi at a concentration of 0.2 g/L, and 100% of the MB was removed after 75 min. It is very important that the magnetic nanofibers could be recycled rapidly with an outside magnet, and the actual water treatment process was easy to achieve. Moreover, the mechanism of MB degradation by Fe@TiSi core-shell nanofibers was proposed.
Collapse
Affiliation(s)
- Sihui Zhan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Pollution Process and Environmental Criteria, Nankai University , Tianjin 300071, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|