1
|
Zhang L, Gonzales RR, Istirokhatun T, Lin Y, Segawa J, Shon HK, Matsuyama H. In situ engineering of an ultrathin polyamphoteric layer on polyketone-based thin film composite forward osmosis membrane for comprehensive anti-fouling performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Niu J, Wang H, Chen J, Chen X, Han X, Liu H. Bio-inspired zwitterionic copolymers for antifouling surface and oil-water separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Yang X, Cui M, Zhou J, Zhang L, Zhou H, Luo Z, Zhou L, Hu H. Surface Fluorination Modification and Anti-Biofouling Study of a pHEMA Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:523-532. [PMID: 35014303 DOI: 10.1021/acsabm.0c01071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel film was prepared by bulk polymerization. Then, it was surface modified by perfluorooctanoyl chloride to improve the anti-biofouling properties. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDXS), and atomic force microscopy (AFM) analyses demonstrated that the uniform dense fluorinated layer had been successfully grafted onto pHEMA. The water contact angle (WCA) of the modified pHEMA film increased to 135°, while the surface energy decreased to 13.32 mN/m. The protein and bacterial adhesion properties of the modified pHEMA were decreased significantly. The in vitro cytotoxicity showed that the modified pHEMA was noncytotoxic. Thus, the fluorinated modification on the material surface was a convenient and effective method to establish a hydrophobic and anti-biofouling surface.
Collapse
Affiliation(s)
- Xinlin Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengmeng Cui
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsheng Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haohao Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhongkuan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Li Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huiyuan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Li X, Li D, Lv P, Hu J, Feng Q, Wei Q. Immobilization of laccase onto modified PU/RC nanofiber via atom transfer radical polymerization method and application in removal of bisphenol A. Eng Life Sci 2020; 19:815-824. [PMID: 32624974 PMCID: PMC6999588 DOI: 10.1002/elsc.201900075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/27/2019] [Accepted: 09/18/2019] [Indexed: 12/07/2022] Open
Abstract
In this study, 2-hydroxyethyl methacrylate (HEMA) was used as the monomers for surface grafting on electrospun PU/RC nanofiber membrane via atom transfer radical polymerization (ATRP) method, and the PU/RC-poly(HEMA) nanofiber membrane was investigated as a carrier for LAC. Free and immobilized LAC was characterized, and efficiency of bisphenol A (BPA) removal was determined. The results indicated that the PU/RC-poly(HEMA)-LAC showed relatively higher pH stability, temperature stability, and storage stability than free and PU/RC-LAC; moreover, more than 60% of the PU/RC-poly(HEMA)-LAC activity was retained after 10 cycles of ABTS treatment. Notably, the BPA removal efficiency of PU/RC-poly(HEMA)-LAC membrane generally ranged from 87.3 to 75.4% for the five cycles. Therefore, the PU/RC-poly(HEMA) nanofiber membrane has great potential as a carrier for the LAC immobilization for various industrial applications and bioremediation.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University Jiangsu Province Wuxi P. R. China
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University Jiangsu Province Wuxi P. R. China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University Jiangsu Province Wuxi P. R. China
| | - Jinyan Hu
- Key Laboratory of Textile Fabric Anhui Polytechnic University Wuhu Anhui P. R. China
| | - Quan Feng
- Key Laboratory of Textile Fabric Anhui Polytechnic University Wuhu Anhui P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University Jiangsu Province Wuxi P. R. China.,Fujian Key Laboratory of Novel Functional Textile Fiber and Materials Minjiang University Fuzhou Fujian P. R. China
| |
Collapse
|
5
|
Yoon SK, Chung DJ. Development of Blood Compatible Composite Using MPC Copolymer and Polyolefin for Non-PVC Blood Bag Application. Macromol Res 2019. [DOI: 10.1007/s13233-020-8047-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Jiang Y, Su Y, Zhao L, Meng F, Wang Q, Ding C, Luo J, Li J. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP. Colloids Surf B Biointerfaces 2017; 156:87-94. [DOI: 10.1016/j.colsurfb.2017.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
|
7
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Li S, Cai Y, Cao J, Cai M, Chen Y, Luo X. Phosphorylcholine micelles decorated by hyaluronic acid for enhancing antitumor efficiency. Polym Chem 2017. [DOI: 10.1039/c6py02032a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DOX-loaded PCL-PDEAMPC micelles coated with HA by electrostatic attraction for enhancing antitumor efficiency and prolonging blood circulation time.
Collapse
Affiliation(s)
- Shuai Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu, 610065
- China
| | - Yuanyuan Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu, 610065
- China
| | - Jun Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu, 610065
- China
| | - Mengtan Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu, 610065
- China
| | - Yuanwei Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu, 610065
- China
| | - Xianglin Luo
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu, 610065
- China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
9
|
Wang PX, Dong YS, Lu XW, Du J, Wu ZQ. Marrying mussel inspired chemistry with photoiniferters: a novel strategy for surface functionalization. Polym Chem 2016. [DOI: 10.1039/c6py01223j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We demonstrated a novel strategy of marrying mussel inspired chemistry with photoiniferters for surface functionalization.
Collapse
Affiliation(s)
- Pei-Xi Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi-Shi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiao-Wen Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jun Du
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhao-Qiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
10
|
Dunderdale GJ, England MW, Urata C, Hozumi A. Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12220-12229. [PMID: 25988214 DOI: 10.1021/acsami.5b02634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silicon (Si) substrates were modified with polyalkyl methacrylate brushes having different alkyl chain lengths (C(n), where n = 1, 4, 8, and 18) using ARGET-ATRP at ambient temperature without purging the reaction solution of oxygen. The dynamic hydrophobicity of these polymer brush-covered Si surfaces when submerged in a variety of organic solvents (1-butanol, dichloromethane, toluene, n-hexane) depended markedly on the alkyl chain length and to a lesser extent polymer solubility. Long-chain poly(stearyl methacrylate) brushes (C(n) = 18) submerged in toluene showed excellent water-repellant properties, having large advancing/receding contact angles (CAs) of 169°/168° with negligible CA hysteresis (1°). Whereas polymer brushes with short alkyl-chain (C(n) ≤ 4) had significantly worse water drop mobility because of small CAs (as low as 125°/55°) and large CA hysteresis (up to 70°). However, such poor dynamic dewetting behavior of these surfaces was found to significantly improve when water drops impacted onto the surfaces at moderate velocities. Under these conditions, all brush surfaces were able to expel water drops from their surface. In addition, our brush surfaces were also highly repellant toward air bubbles under all conditions, irrespective of C(n) or polymer solubility. These excellent surface properties were found to be vastly superior to the performance of conventional perfluoroalkylsilane-derived surfaces.
Collapse
Affiliation(s)
- Gary J Dunderdale
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Matt W England
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Chihiro Urata
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
11
|
Preparation of hydrocarbon/fluorocarbon double-chain phospholipid polymer brusheson polyurethane films by ATRP. Colloids Surf B Biointerfaces 2015; 128:36-43. [DOI: 10.1016/j.colsurfb.2015.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
|
12
|
Feng Q, Hou D, Zhao Y, Xu T, Menkhaus TJ, Fong H. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20958-20967. [PMID: 25396286 DOI: 10.1021/am505722g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be suitable/ideal as efficient supports for high-density and reusable enzyme immobilization.
Collapse
Affiliation(s)
- Quan Feng
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University , Wuhu, Anhui 241000, China
| | | | | | | | | | | |
Collapse
|