1
|
Li J, Xu F, Chen W, Han Y, Lin B. Anion Exchange Membranes Based on Bis-Imidazolium and Imidazolium-Functionalized Poly(phenylene oxide) for Vanadium Redox Flow Battery Applications. ACS OMEGA 2023; 8:16506-16512. [PMID: 37179649 PMCID: PMC10173422 DOI: 10.1021/acsomega.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Although the Nafion membrane has a high energy efficiency, long service life, and operational flexibility when applied for vanadium redox flow battery (VRFB) applications, its applications are limited due to its high vanadium permeability. In this study, anion exchange membranes (AEMs) based on poly(phenylene oxide) (PPO) with imidazolium and bis-imidazolium cations were prepared and used in VRFBs. PPO with long-pendant alkyl-side-chain bis-imidazolium cations (BImPPO) exhibits higher conductivity than the imidazolium-functionalized PPO with short chains (ImPPO). ImPPO and BImPPO have a lower vanadium permeability (3.2 × 10-9 and 2.9 × 10-9 cm2 s-1) than Nafion 212 (8.8 × 10-9 cm2 s-1) because the imidazolium cations are susceptible to the Donnan effect. Furthermore, under the current density of 140 mA cm-2, the VRFBs assembled with ImPPO- and BImPPO-based AEMs exhibited a Coulombic efficiency of 98.5% and 99.8%, respectively, both of which were higher than that of the Nafion212 membrane (95.8%). Bis-imidazolium cations with long-pendant alkyl side chains contribute to hydrophilic/hydrophobic phase separation in the membranes, thus improving the conductivity of membranes and the performance of VRFBs. The VRFB assembled with BImPPO exhibited a higher voltage efficiency (83.5%) at 140 mA cm-2 than that of ImPPO (77.2%). These results of the present study suggest that the BImPPO membranes are suitable for VRFB applications.
Collapse
|
2
|
Beydaghi H, Bellani S, Najafi L, Oropesa-Nuñez R, Bianca G, Bagheri A, Conticello I, Martín-García B, Kashefi S, Serri M, Liao L, Sofer Z, Pellegrini V, Bonaccorso F. Sulfonated NbS 2-based proton-exchange membranes for vanadium redox flow batteries. NANOSCALE 2022; 14:6152-6161. [PMID: 35389414 DOI: 10.1039/d1nr07872k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (σ) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 × 10-7 to 2.34 × 10-7 cm2 min-1. Meanwhile, it increases the membrane σ and selectivity up to 94.35 mS cm-2 and 40.32 × 104 S min cm-3, respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm-2, delivering a maximum power density of 0.83 W cm-2 at a current density of 870 mA cm-2. The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm-2. This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.
Collapse
Affiliation(s)
- Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Leyla Najafi
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- Department of Material Science and Engineering, Uppsala University, Box 534, 75103 Uppsala, Sweden
| | - Gabriele Bianca
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Ahmad Bagheri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Irene Conticello
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Sepideh Kashefi
- Department of Chemical Engineering, Semnan University, Semnan, 3513119111, Iran
| | - Michele Serri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| |
Collapse
|