1
|
He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G. Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group. Phys Chem Chem Phys 2021; 23:17939-17944. [PMID: 34382052 DOI: 10.1039/d1cp02983e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For photochromic molecules, effective isomerization usually requires conformational freedom, which is usually unavailable under solvent-free conditions. In this work, we report a new method, which can realize the reversible switching of spiropyran molecules by introducing a rigid aromatic ring group and this method can provide the required free volume to transform from a closed-ring to an open-ring form. This new molecule can quickly change color in the solid state under ultraviolet light, and can be erased after being heated at 60 °C for about 5 minutes. Furthermore, this new compound presents mechanochromicity when a mechanical force is applied. What is more, it can be used for at least 30 cycles of print-erase operations without apparent fatigue. This new molecule exhibits improved photochromic and anti-fatigue properties in the solid state, which can promote its application in both ultraviolet printing and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Junzhao He
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | | | | | | | |
Collapse
|
2
|
Grady ME, Birrenkott CM, May PA, White SR, Moore JS, Sottos NR. Localization of Spiropyran Activation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5847-5854. [PMID: 32396732 DOI: 10.1021/acs.langmuir.0c00568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functionalization of planar and curved glass surfaces with spiropyran (SP) molecules and localized UV-induced activation of the mechanophore are demonstrated. Fluorescence spectra of UV-irradiated SP-functionalized surfaces reveal that increases in surface roughness or curvature produce more efficient conversion of the mechanophore to the open merocyanine (MC) form. Further, force-induced activation of the mechanophore is achieved at curved glass-polymer interfaces and not planar interfaces. Minimal fluorescence signal from UV-irradiated SP-functionalized planar glass surfaces precluded mechanical activation testing. Curved glass-polymer interfaces are prepared by SP functionalization of E-glass fibers, which are subsequently embedded in a poly(methyl methacrylate) (PMMA) matrix. Mechanical activation is induced through shear loading by a single fiber microbond testing protocol. In situ detection of SP activation at the interface is monitored by fluorescence spectroscopy. The fluorescence increase during interfacial testing suggests that attachment of the interfacial SP molecule to both fiber surface and polymer matrix is present and able to achieve significant activation of SP at the fiber-polymer matrix interface. Unlike previous studies for bulk polymers, SP activation is detected at relatively low levels of applied shear stress. By linking SP at the glass-polymer interface and transferring load directly to that interface, a more efficient mechanism for eliciting the SP response is achieved.
Collapse
Affiliation(s)
- Martha E Grady
- Department of Mechanical Engineering, University of Kentucky, 506 Administration Drive, Lexington, Kentucky 40506, United States
| | - Cassandra M Birrenkott
- Department of Mechanical Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, South Dakota 57701, United States
| | - Preston A May
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott R White
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nancy R Sottos
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Zhang X, Ao CK, Soh S. Nonconductive Noncharging Composites: Tunable and Stretchable Materials for Adaptive Prevention of Charging by Contact Electrification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5274-5285. [PMID: 31769961 DOI: 10.1021/acsami.9b16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Static charge generated by contact electrification can cause a wide range of undesirable consequences in our lives and in industry (e.g., adhesion of particles on surfaces, damage to electronics, and explosions). It has, however, been challenging to develop methods to prevent charging due to the vast types of materials that charge easily by contact electrification and the frequent changes in process and environmental conditions. The most common method is to use conductive materials for dissipating charge away; however, it is ineffective for many circumstances. Here, we propose a general and effective materials framework that involves a two-level consideration for preparing noncharging materials: (1) the variation of the proportion of a two-material composite and (2) the extent of stretching the composite material. This materials strategy is achieved by infusing particles within a stretchable bulk material. Importantly, the preparation of the noncharging surface for (1) is based on a novel fundamental mechanism that involves combining an appropriate amount of a material (e.g., the particles) that tends to charge positively with another material (e.g., the bulk material) that tends to charge negatively. This mechanism does not rely on conductivity; both the contacting materials naturally prevent the generation of static charge even when only nonconductive materials are involved. When the composite material is stretchable, the change in proportion of the surface coverage of the particles allows the charging response to be changed. Therefore, the variation in composition and stretching provide a wide two-dimensional parameter space for achieving noncharging response for the vast range of contacting materials that are used in industry and our lives. In addition, stretchability allows the composite material to flexibly adapt to changes in process and environmental conditions. This stretchable composite material was also demonstrated to be capable of preventing the adhesion of particles and separating particles of different materials.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Chi Kit Ao
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| |
Collapse
|
4
|
Control of triboelectric charges on common polymers by photoexcitation of organic dyes. Nat Commun 2019; 10:276. [PMID: 30655528 PMCID: PMC6336862 DOI: 10.1038/s41467-018-08037-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/06/2018] [Indexed: 12/02/2022] Open
Abstract
Triboelectric charging of insulators, also known as contact charging in which electrical charges develop on surfaces upon contact, is a significant problem that is especially critical for various industries such as polymers, pharmaceuticals, electronics, and space. Several methods of tribocharge mitigation exist in practice; however, none can reach the practicality of using light in the process. Here we show a light-controlled manipulation of triboelectric charges on common polymers, in which the tribocharges are mitigated upon illumination with appropriate wavelengths of light in presence of a mediator organic dye. Our method provides spatial and temporal control of mitigation of static charges on common polymer surfaces by a mechanism that involves photoexcitation of organic dyes, which also allows additional control using wavelength. This control over charge mitigation provides a way to manipulate macroscopic objects by tribocharging followed by light-controlled discharging. Contact charging of insulators is a significant problem for various industries, such as plastics, electronics, and space. Here the authors gain spatial and temporal control of discharge of triboelectrically charged polymers upon illumination of a set of common organic dyes.
Collapse
|
5
|
Chen L, Shi Q, Sun Y, Nguyen T, Lee C, Soh S. Controlling Surface Charge Generated by Contact Electrification: Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802405. [PMID: 30129287 DOI: 10.1002/adma.201802405] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Contact electrification is the phenomenon in which charge is generated on the surfaces of materials after they come into contact. The surface charge generated has traditionally been known to cause a vast range of undesirable consequences in our lives and in industry; on the other hand, it can also give rise to many types of useful applications. In addition, there has been a lot of interest in recent years for fabricating devices and materials based on regulating a desired amount of surface charge. It is thus important to understand the general strategies for increasing, decreasing, or controlling the surface charge generated by contact electrification. Herein, the fundamental mechanisms for influencing the amount of charge generated, the methods used for implementing these mechanisms, and some of the recent interesting applications that require regulating the amount of surface charge generated by contact electrification, are briefly summarized.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Yajuan Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Trang Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
6
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Dye-functionalized polymers via ring opening metathesis polymerization: principal routes and applications. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1493-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Hu X, Shi J, Thomas SW. Photolabile ROMP gels using ortho-nitrobenzyl functionalized crosslinkers. Polym Chem 2015. [DOI: 10.1039/c5py00562k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The photosensitivity of ROMP gels to UV light is broadly tunable based on the structure of o-nitrobenzyl-derived crosslinkers.
Collapse
Affiliation(s)
- Xiaoran Hu
- Department of Chemistry
- Tufts University
- Medford
- USA
| | - Junfeng Shi
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | | |
Collapse
|