1
|
Li H, Shangguan Z, Li T, Zhang ZY, Ji D, Hu W. Arylazopyrazole-modulated stable dual-mode phototransistors. SCIENCE ADVANCES 2024; 10:eado2329. [PMID: 38838139 DOI: 10.1126/sciadv.ado2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
High-performance organic devices with dynamic and stable modulation are essential for building devices adaptable to the environment. However, the existing reported devices incorporating light-activated units exhibit either limited device stability or subpar optoelectronic properties. Here, we synthesize a new optically tunable polymer dielectric functionalized with photochromic arylazopyrazole units with a cis-isomer half-life of as long as 90 days. On this basis, stable dual-mode organic transistors that can be reversibly modulated are successfully fabricated. The trans-state devices exhibit high carrier mobility reaching 7.4 square centimeters per volt per second and excellent optical figures of merit, whereas the cis-state devices demonstrate stable but starkly different optoelectronic performance. Furthermore, optical image sensors are prepared with regulatable nonvolatile memories from 36 hours (cis state) to 108 hours (trans state). The achievement of dynamic light modulation shows remarkable prospects for the intelligent application of organic optoelectronic devices.
Collapse
Affiliation(s)
- Huchao Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072 Tianjin, China
- Key Laboratory of Organic Integrated Circuit, Ministry of Education, Tianjin University, 300072 Tianjin, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education, Tianjin University, 300072 Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
2
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Yue Y, Azumi R, Norikane Y. Fatigue‐Resistant Crosslinked Azopolymers with Inhibited H‐Aggregation for Efficient Photopatterning. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Youfeng Yue
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| | - Reiko Azumi
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| | - Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
4
|
Chen H, Zhang W, Li M, He G, Guo X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem Rev 2020; 120:2879-2949. [PMID: 32078296 DOI: 10.1021/acs.chemrev.9b00532] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous interfaces that are ubiquitous in optoelectronic devices play a key role in the device performance and have led to the prosperity of today's microelectronics. Interface engineering provides an effective and promising approach to enhancing the device performance of organic field-effect transistors (OFETs) and even developing new functions. In fact, researchers from different disciplines have devoted considerable attention to this concept, which has started to evolve from simple improvement of the device performance to sophisticated construction of novel functionalities, indicating great potential for further applications in broad areas ranging from integrated circuits and energy conversion to catalysis and chemical/biological sensors. In this review article, we provide a timely and comprehensive overview of current efficient approaches developed for building various delicate functional interfaces in OFETs, including interfaces within the semiconductor layers, semiconductor/electrode interfaces, semiconductor/dielectric interfaces, and semiconductor/environment interfaces. We also highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits, which have been neglected in most previous reviews. This review will provide a fundamental understanding of the interplay between the molecular structure, assembly, and emergent functions at the molecular level and consequently offer novel insights into designing a new generation of multifunctional integrated circuits and sensors toward practical applications.
Collapse
Affiliation(s)
- Hongliang Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weining Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Mingliang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Gen He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Bajpai AK, Bhatt R. Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enabled analysis of inter-polymer phases formation in poly (diaminonaphthalene) doped conducting poly (vinyl alcohol) films. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Dissanayake DS, McCandless GT, Stefan MC, Biewer MC. Systematic variation of thiophene substituents in photochromic spiropyrans. Photochem Photobiol Sci 2017; 16:1057-1062. [DOI: 10.1039/c7pp00057j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic method was developed to incorporate spiropyran into thiophene based materials via a conjugated pathway. As the number of thiophene units increased, the thermal decay rate of the reverse reaction decreased in methanol, thus increasing the half-life of merocyanine.
Collapse
Affiliation(s)
| | | | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Michael C. Biewer
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| |
Collapse
|
7
|
Barachevsky VA. Electrical properties of photochromic organic systems (review). HIGH ENERGY CHEMISTRY 2016. [DOI: 10.1134/s0018143916050040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Fu LN, Leng B, Li YS, Gao XK. Photoresponsive organic field-effect transistors involving photochromic molecules. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.06.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Nourmohammadian F, Abdi AA. Development of molecular photoswitch with very fast photoresponse based on asymmetrical bis-azospiropyran. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:53-62. [PMID: 26296250 DOI: 10.1016/j.saa.2015.07.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
To study the effects of an extended bis-azo conjugated bridge with two different photochemical functions on a molecule in photochromic responses, a novel asymmetrical bifunctional bis-azo spiropyran photochromic dye was designed and synthesized. The obtained photoresponses were compared with symmetrical bifunctional bis-azo spiropyran analogues, and relative mono-azo and simple spiropyrans. Colourimetric behaviour, luminescence, and switching kinetics of all the dyes were studied. The largest molar absorption coefficient in merocyanine form, quickest response to light, and highest fluorescence quantum yield of the spiropyran form with a superior ratio of emission intensities of spiropyran to merocyanine form were achieved for the asymmetric bis-azospiropyran. Solvatochromic effect was studied to observe the solvent effects on non-irradiation colouration of the photochromic dyes. Furthermore, The molecular energy levels for optimized geometries of the synthesized bis-azospiropyrans and their probable photochemical products were obtained at the B3LYP/6-31G(d) level of theory.
Collapse
Affiliation(s)
- Farahnaz Nourmohammadian
- Department of Organic Colorants, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran; Centre of Excellence for Color Science and Technology, Tehran, Iran.
| | - Ali Ashtiani Abdi
- Department of Organic Colorants, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| |
Collapse
|