1
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Mansoor F, Ju H, Saeed M, Kanwal S. Facile synthesis of gold nanocages with silver nanocubes templates dual metal effects enabled SERS imaging and catalytic reduction. RSC Adv 2023; 13:31366-31374. [PMID: 37901276 PMCID: PMC10603383 DOI: 10.1039/d3ra06344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
Silver (Ag) nanomaterials featuring a cubic shape particularly represent supreme class of advance nanomaterials. This work explored a new precursor and its effect on morphological features of silver (Ag) nanocubes (NCs) serving as sacrificial templates for facile synthesis of gold NCs. The AgNCs were initially prepared utilizing sodium thiosulphate (Na2S2O3) as relatively stable S2- producing species along with a soft etchant source KCl. The effects of different potassium halides were evaluated to grasp control over seed mediated growth of Ag nanocubes. Taking the advantages of dual metallic properties, Ag@4MBA@AuNCs nanostructure was synthesized using 4-mercaptobenzoic acid (4MBA) as a Raman reporter molecule. This nanostructure showed 1010-times enhancement in surface enhanced Raman scattering (SERS) signal, leading to a highly sensitive imaging probe for the detection of even three breast cancer cells (MCF-7 cells) in vitro. Subsequently, the oxidative nanopeeling well accompanied by incorporation of Au/Ag alloy nanoparticles on AuNCs corona assembly was achieved, which facilitated the catalytic reduction of toxic nitrophenol to eco-friendly aminophenol. Such sophisticated and engineered nanoassemblies possess broad applications in bioanalysis.
Collapse
Affiliation(s)
- Farukh Mansoor
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Sciences Department of Chemistry, Nanjing University Nanjing 210023 China
| | - Madiha Saeed
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University, Islamabad, Lahore Campus Lahore Pakistan
| | - Shamsa Kanwal
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| |
Collapse
|
3
|
Almehmadi LM, Valsangkar VA, Halvorsen K, Zhang Q, Sheng J, Lednev IK. Surface-enhanced Raman spectroscopy for drug discovery: peptide-RNA binding. Anal Bioanal Chem 2022; 414:6009-6016. [PMID: 35764806 PMCID: PMC9404289 DOI: 10.1007/s00216-022-04190-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
The ever-growing demand for new drugs highlights the need to develop novel cost- and time-effective techniques for drug discovery. Surface-enhanced Raman spectroscopy (SERS) is an emerging ultrasensitive and label-free technique that allows for the efficient detection and characterization of molecular interactions. We have recently developed a SERS platform for detecting a single protein molecule linked to a gold substrate (Almehmadi et al. Scientific Reports 2019). In this study, we extended the approach to probe the binding of potential drugs to RNA targets. To demonstrate the proof of concept, two 16-amino acid residue peptides with close primary structures and different binding affinities to the RNA CUG repeat related to myotonic dystrophy were tested. Three-microliter solutions of the RNA repeat with these peptides at nanomolar concentrations were probed using the developed approach, and the binding of only one peptide was demonstrated. The SER spectra exhibited significant fluctuations along with a sudden strong enhancement as spectra were collected consecutively from individual spots. Principal component analysis (PCA) of the SER spectral datasets indicated that free RNA repeats could be differentiated from those complexed with a peptide with 100% accuracy. The developed SERS platform provides a novel opportunity for label-free screening of RNA-binding peptides for drug discovery. Schematic representation of the SERS platform for drug discovery developed in this study.
Collapse
Affiliation(s)
- Lamyaa M Almehmadi
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Vibhav A Valsangkar
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ken Halvorsen
- College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Qiang Zhang
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA. .,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA. .,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
4
|
Exploring Sensitive Label-Free Multiplex Analysis with Raman-Coded Microbeads and SERS-Coded Reporters. BIOSENSORS 2022; 12:bios12020121. [PMID: 35200381 PMCID: PMC8870176 DOI: 10.3390/bios12020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Suspension microsphere immunoassays are rapidly gaining attention in multiplex bioassays. Accurate detection of multiple analytes from a single measurement is critical in modern bioanalysis, which always requires complex encoding systems. In this study, a novel bioassay with Raman-coded antibody supports (polymer microbeads with different Raman signatures) and surface-enhanced Raman scattering (SERS)-coded nanotags (organic thiols on a gold nanoparticle surface with different SERS signatures) was developed as a model fluorescent, label-free, bead-based multiplex immunoassay system. The developed homogeneous immunoassays included two surface-functionalized monodisperse Raman-coded microbeads of polystyrene and poly(4-tert-butylstyrene) as the immune solid supports, and two epitope modified nanotags (self-assembled 4-mercaptobenzoic acid or 3-mercaptopropionic acid on gold nanoparticles) as the SERS-coded reporters. Such multiplex Raman/SERS-based microsphere immunoassays could selectively identify specific paratope–epitope interactions from one mixture sample solution under a single laser illumination, and thus hold great promise in future suspension multiplex analysis for diverse biomedical applications.
Collapse
|
5
|
Huang L, Qiu S, Liu Z, Wu S, Tang Q, Liao X, Gao F. Proximity hybridization induced DNA assembly for label-free surface-enhanced Raman spectroscopic detection of carcinoembryonic antigen. Anal Chim Acta 2022; 1191:339314. [PMID: 35033249 DOI: 10.1016/j.aca.2021.339314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022]
Abstract
In our research, label-free and surface-enhanced Raman dyes-free Raman spectroscopy which was used to detect carcinoembryonic antigen (CEA) according to poly adenine (Poly A)-regulated self-assembly methods was developed and studied. CEA induced partial hybridization of Ab-H2 and Ab-H1, and Ab-H1-CEA-Ab-H2 (a sandwich proximity CEA-DNA complex) was formed, which unfolded molecular beacon 1 (MB1) and modified the substrate. Subsequently, MB2-AuNPs were hybridized with MB1, and Ab-H1-CEA-Ab-H2 was released via toehold regulated displacements of DNA strands. Therefore, hybridization processes of MB2 and MB1 were induced and promoted by CEA-DNA complexes which worked as catalysts. The misplaced target then induced a next round of strand exchange, and the signals for determination of CEA were amplified by AuNPs absorbed on the substrate. It was indicated that the spectral characteristics of adenine at 736 cm-1 were consistent with the SERS spectrum of DNA. Adenine acted as an internal marker for label-free SERS detection of CEA. Moreover, satisfactory stability and reproducibility were found. Meanwhile, the antibody could specifically recognize the corresponding antigen. Since adenine was dominant in SERS spectra, which was also proximal to Au surface, the sensitivity of the novel method was high without modifications. The analytical performance of this method in determining serum CEA was satisfactory.
Collapse
Affiliation(s)
- Longjian Huang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shang Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zhao Liu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Shengyue Wu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
6
|
Karn-Orachai K. Gap-Dependent Surface-Enhanced Raman Scattering (SERS) Enhancement Model of SERS Substrate-Probe Combination Using a Polyelectrolyte Nanodroplet as a Distance Controller. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10776-10785. [PMID: 34463518 DOI: 10.1021/acs.langmuir.1c01556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of surface-enhanced Raman scattering (SERS) biosensor platforms based on the sandwich combination of an SERS substrate and Raman reporter coated gold nanoparticle (AuNP) labeled with antibody has been widely performed for highly sensitive detection of biomolecules. The size of biomolecules located between these SERS-active materials dictates the sensitivity enhancement of the sensor. However, no suitable molecular size is provided. In this study, we report the gap-dependent SERS enhancement model using the combination of two SERS-active materials of 2D arrays of gold core-silver shell nanoparticles (Au@Ag core-shell NPs) as SERS-active substrates and mercaptobenzoic acid (MBA)-labeled AuNPs as SERS probes. The distance between these two materials is finely tuned using layer-by-layer assembled polyelectrolyte multilayer films. The morphology of the polyelectrolyte spacer is controlled into a droplet nanostructure, which is assumed to have a comparable shape with globular biomolecules. The well-controlled height or thickness of polyelectrolyte nanodroplet was achieved by changing number of deposition cycles. By increasing the thickness of the polyelectrolyte nanodroplet, MBA SERS intensities gradually decreased until at 40 nm-thick nanodroplet film and maintained afterward. This spacer thickness defined the limit of plasmonic coupling effect from this SERS probe-substrate combination. The SERS enhancement capability of this model was compared to conventional SERS immunoassay using three different antigen-antibody complex sizes of prostate-specific antigen, carcinoembryonic antigen, and carbohydrate antigen 19-9. Good agreement of the limitation of plasmon coupling as a function of the distance between the SERS substrate-probe combination using this developed model and SERS immunoassay was found. The finding provides valuable guidelines for immune-system selection in SERS immunosensors based on SERS substrate-probe combination.
Collapse
Affiliation(s)
- Kullavadee Karn-Orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| |
Collapse
|
7
|
Qu Q, Wang J, Zeng C, Wang M, Qi W, He Z. AuNP array coated substrate for sensitive and homogeneous SERS-immunoassay detection of human immunoglobulin G. RSC Adv 2021; 11:22744-22750. [PMID: 35480431 PMCID: PMC9034334 DOI: 10.1039/d1ra02404c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Owing to the high sensitivity, fast responsiveness and high specificity, immunoassays using surface-enhanced Raman scattering (SERS) as the readout signal displayed great potential in disease diagnosis. In this study, we developed a SERS-immunoassay method for the detection of human immunoglobulin G (HIgG). Upon involving well-ordered AuA on a SERSIA substrate, the LSPR effect was further enhanced to generate a strong and uniform Raman signal through the formation of sandwich structure with the addition of target HIgG and SERSIA tag. Optimization of the assay provided a wide linear range (0.1–200 μg mL−1) and low limit of detection (0.1 μg mL−1). In addition, the SERS-immunoassay method displayed excellent specificity and was homogeneous, which guaranteed the practical use of this method in the quantitative detection of HIgG. To validate this assay, human serum was analysed, which demonstrated the potential advantages of SERS-immunoassay technology in clinical diagnostics. An AuNP array coated substrate was developed for the SERS-immunoassay detection of human immunoglobulin G.![]()
Collapse
Affiliation(s)
- Qi Qu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Jing Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Chuan Zeng
- Technical Center of Zhuhai Entry-Exit Inspection and Quarantine Bureau Zhuhai P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin Tianjin 300072 P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
8
|
Er E, Sánchez-Iglesias A, Silvestri A, Arnaiz B, Liz-Marzán LM, Prato M, Criado A. Metal Nanoparticles/MoS 2 Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8823-8831. [PMID: 33583183 PMCID: PMC7908013 DOI: 10.1021/acsami.0c22203] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
The detection of cancer biomarkers at an early stage of tumor development is vital for effective diagnosis and treatment of cancer. Current diagnostic tools can often detect cancer only when the biomarker levels are already too high, so that the tumors have spread and treatments are less effective. It is urgent therefore to develop highly sensitive assays for the detection of such biomarkers at the lowest possible concentration. In this context, we developed a sandwich immunoassay based on surface-enhanced Raman scattering (SERS) for the ultrasensitive detection of α-fetoprotein (AFP), which is typically present in human serum as a biomarker indicative of early stages of hepatocellular carcinoma. In the immunoassay design, molybdenum disulfide (MoS2) modified with a monoclonal antibody was used as a capture probe for AFP. A secondary antibody linked to an SERS-encoded nanoparticle was employed as the Raman signal reporter, that is, the transducer for AFP detection. The sandwich immunocomplex "capture probe/target/SERS tag" was deposited on a silicon wafer and decorated with silver-coated gold nanocubes to increase the density of "hot spots" on the surface of the immunosensor. The developed SERS immunosensor exhibits a wide linear detection range (1 pg mL-1 to 10 ng mL-1) with a limit of detection as low as 0.03 pg mL-1 toward AFP with good reproducibility (RSD < 6%) and stability. These parameters demonstrate that the proposed immunosensor has the potential to be used as an analytical platform for the detection of early-stage cancer biomarkers in clinical applications.
Collapse
Affiliation(s)
- Engin Er
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Ana Sánchez-Iglesias
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Alessandro Silvestri
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Blanca Arnaiz
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Department
of Applied Chemistry, University of the
Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| |
Collapse
|
9
|
Czaplicka M, Niciński K, Nowicka A, Szymborski T, Chmielewska I, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Effect of Varying Expression of EpCAM on the Efficiency of CTCs Detection by SERS-Based Immunomagnetic Optofluidic Device. Cancers (Basel) 2020; 12:cancers12113315. [PMID: 33182636 PMCID: PMC7697545 DOI: 10.3390/cancers12113315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In this work we present a magnetically supported SERS-based immunoassay based on solid SERS-active support for the detection of circulating tumor cells. The SERS response in our optofluidic device was correlated with the level of EpCAM expression. The level of EpCAM cell expression in four cell lines with relatively high (human metastatic prostate adenocarcinoma cells (LNCaP)), medium (human metastatic prostate adenocarcinoma cells (LNCaP)), weak (human metastatic prostate adenocarcinoma cells (LNCaP)), and no EpCAM expressions (cervical cancer cells (HeLa) has been estimated using Western Blot method supported by immunochemistry and correlated with responses of immunomagnetic SERS-based analysis. The capture efficiency of developed assay was investigated in metastatic lung cancer patients. The assay demonstrates the capability to detect circulating tumor cells from blood samples over a broad linear range (from 1 to 100 cells/mL) reflecting clinically relevant amount of CTCs depending on the stage of metastasis, age, applied therapy. Abstract The circulating tumor cells (CTCs) isolation and characterization has a great potential for non-invasive biopsy. In the present research, the surface–enhanced Raman spectroscopy (SERS)-based assay utilizing magnetic nanoparticles and solid SERS-active support integrated in the external field assisted microfluidic device was designed for efficient isolation of CTCs from blood samples. Magnetic nanospheres (Fe2O3) were coated with SERS-active metal and then modified with p-mercaptobenzoic acid (p-MBA) which works simultaneously as a Raman reporter and linker to an antiepithelial-cell-adhesion-molecule (anti-EpCAM) antibodies. The newly developed laser-induced SERS-active silicon substrate with a very strong enhancement factor (up to 108) and high stability and reproducibility provide the additional extra-enhancement in the sandwich plasmonic configuration of immune assay which finally leads to increase the efficiency of detection. The sensitive immune recognition of cancer cells is assisted by the introducing of the controllable external magnetic field into the microfluidic chip. Moreover, the integration of the SERS-active platform and p-MBA-labeled immuno-Ag@Fe2O3 nanostructures with microfluidic device offers less sample and analytes demand, precise operation, increase reproducibly of spectral responses, and enables miniaturization and portability of the presented approach. In this work, we have also investigated the effect of varying expression of the EpCAM established by the Western Blot method supported by immunochemistry on the efficiency of CTCs’ detection with the developed SERS method. We used four target cancer cell lines with relatively high (human metastatic prostate adenocarcinoma cells (LNCaP)), medium (human metastatic prostate adenocarcinoma cells (LNCaP)), weak (human metastatic prostate adenocarcinoma cells (LNCaP)), and no EpCAM expressions (cervical cancer cells (HeLa)) to estimate the limits of detection based on constructed calibration curves. Finally, blood samples from lung cancer patients were used to validate the efficiency of the developed method in clinical trials.
Collapse
Affiliation(s)
- Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Ariadna Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Izabela Chmielewska
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland;
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.T.-D.); (A.G.)
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.T.-D.); (A.G.)
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
- Correspondence:
| |
Collapse
|
10
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Li D, Yang M, Li H, Mao L, Wang Y, Sun B. SERS based protocol using flow glass-hemostix for detection of neuron-specific enolase in blood plasma. NEW J CHEM 2019. [DOI: 10.1039/c8nj02561d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An inexpensive and disposable lateral flow glass-hemostix (FGH) has been developed as an immunoassay, in which surface-enhanced Raman scattering (SERS) is utilized for sensing signal transduction.
Collapse
Affiliation(s)
- Dawei Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong
- Institute for Neurological Diseases
- Life Science Research Centre
- Taishan Medical University
- Taian
| | - Mingfeng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong
- Institute for Neurological Diseases
- Life Science Research Centre
- Taishan Medical University
- Taian
| | - Hanxia Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong
- Institute for Neurological Diseases
- Life Science Research Centre
- Taishan Medical University
- Taian
| | - Leilei Mao
- Key Lab of Cerebral Microcirculation in Universities of Shandong
- Institute for Neurological Diseases
- Life Science Research Centre
- Taishan Medical University
- Taian
| | - Ying Wang
- Key Lab of Cerebral Microcirculation in Universities of Shandong
- Institute for Neurological Diseases
- Life Science Research Centre
- Taishan Medical University
- Taian
| | - Baoliang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong
- Institute for Neurological Diseases
- Life Science Research Centre
- Taishan Medical University
- Taian
| |
Collapse
|
12
|
Zhang Y, Mi X, Tan X, Xiang R. Recent Progress on Liquid Biopsy Analysis using Surface-Enhanced Raman Spectroscopy. Theranostics 2019; 9:491-525. [PMID: 30809289 PMCID: PMC6376192 DOI: 10.7150/thno.29875] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Traditional tissue biopsy is limited in understanding heterogeneity and dynamic evolution of tumors. Instead, analyzing circulating cancer markers in various body fluids, commonly referred to as "liquid biopsy", has recently attracted remarkable interest for their great potential to be applied in non-invasive early cancer screening, tumor progression monitoring and therapy response assessment. Among the various approaches developed for liquid biopsy analysis, surface-enhanced Raman spectroscopy (SERS) has emerged as one of the most powerful techniques based on its high sensitivity, specificity, tremendous spectral multiplexing capacity for simultaneous target detection, as well as its unique capability for obtaining intrinsic fingerprint spectra of biomolecules. In this review, we will first briefly explain the mechanism of SERS, and then introduce recently reported SERS-based techniques for detection of circulating cancer markers including circulating tumor cells, exosomes, circulating tumor DNAs, microRNAs and cancer-related proteins. Cancer diagnosis based on SERS analysis of bulk body fluids will also be included. In the end, we will summarize the "state of the art" technologies of SERS-based platforms and discuss the challenges of translating them into clinical settings.
Collapse
Affiliation(s)
- Yuying Zhang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, 300071 Tianjin, China
| | | | | | | |
Collapse
|
13
|
Gao F, Zhou F, Chen S, Yao Y, Wu J, Yin D, Geng D, Wang P. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst 2018; 142:4308-4316. [PMID: 29053159 DOI: 10.1039/c7an01434a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new homogeneous electrochemical immunoassay strategy was developed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on target-induced proximity hybridization coupled with rolling circle amplification (RCA). The immobilization-free detection of CEA was realized by the use of an uncharged peptide nucleic acid (PNA) probe labeled with ferrocene (Fc) as the electroactive indicator on a negatively charged indium tin oxide (ITO) electrode. In the presence of a target protein and two DNA-labeled antibodies, the proximate complex formed in homogeneous solution could unfold the molecular beacon, and a part of the unfolded molecular beacon as a primer hybridized with the RCA template to initiate the RCA process. Subsequently, the detection probe modified Fc (Fc-PNAs) hybridized with the long amplified DNA products. The consumption of freely diffusible Fc-PNAs (neutrally charged) resulted in a significant reduction of the Fc signal due to the fact that long amplified DNA/Fc-PNA products were electrostatically repelled from the ITO electrode surface. The reduction of the electrochemical signal (signal-off) could indirectly provide the CEA concentration. Under the optimal conditions, CEA detection was implemented in a wide range from 1 pg mL-1 to 10 ng mL-1, with a low detection limit of 0.49 pg mL-1. The proposed strategy exhibited advantages of good selectivity, high sensitivity, acceptable accuracy, and favorable versatility of analytes. Moreover, the practical application value of the system was confirmed by the assay of CEA in human serums with satisfactory results.
Collapse
Affiliation(s)
- Fenglei Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen. Mikrochim Acta 2018; 185:458. [PMID: 30218157 DOI: 10.1007/s00604-018-2989-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
A composite consisting of graphene oxide and gold nanorods (GO-GNRs) was designed for the trace determination of hepatitis B surface antigen (HBsAg) using surface enhanced Raman spectroscopy (SERS). GO contains numerous carboxy and hydroxy groups on its surface and therefore can serve as the substrate for decoration with GNRs and for immobilizing antibody against HBsAg. The GNRs (carrying the SERS probe 2-mercaptopyridine) exhibit high SERS activity, and this improves the sensitivity of the biosensor. The antibody on the GO-GNRs binds HBsAg with high specificity, and it results in excellent selectivity. The SERS signal (measured at 1002 cm-1) increases in the 1-1000 pg·mL-1 HBsAg concentrations range, and the limit of detection is 0.05 pg·mL-1 (at an S/N ratio of 3). The immunoassay achieves the sensitive and selective determination of HBsAg in serum and expands the potential application of GO-GNR based SERS tag in clinical research. Graphical abstract A novel graphene oxide-gold nanorod (GO-GNRs) based surface-enhanced Raman scattering (SERS) tag for immunoassay was designed. It allows for sensitive and selective determination of HBsAg in serum. The method is expected to expand the potential application in the environment, in medicine and in food analysis.
Collapse
|
15
|
Tian Y, Shuai Z, Shen J, Zhang L, Chen S, Song C, Zhao B, Fan Q, Wang L. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800669. [PMID: 29736956 DOI: 10.1002/smll.201800669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/28/2018] [Indexed: 06/08/2023]
Abstract
A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhenhua Shuai
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jingjing Shen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Baomin Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
16
|
Song C, Dou Y, Yuwen L, Sun Y, Dong C, Li F, Yang Y, Wang L. A gold nanoflower-based traceable drug delivery system for intracellular SERS imaging-guided targeted chemo-phototherapy. J Mater Chem B 2018; 6:3030-3039. [PMID: 32254338 DOI: 10.1039/c8tb00587g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate and effective drug delivery in tumor cells significantly improves the curative effect with high drug delivery efficiency, low toxicity and side effects and has become an urgent demand for anticancer therapy. In this paper, a novel traceable and targeted drug delivery nanosystem (i.e. AuNF-nanocarriers) with high drug encapsulation and pH-controlled release was prepared based on gold nanoflowers (AuNFs) for efficient intracellular SERS imaging-guided chemo-phototherapy. SERS-active flower-like gold nanoparticles with large surface area were synthesized first and then modified with Raman and RGD molecules in sequence to prepare bright, traceable and targeted SERS tags of A549 human lung cancer cells. Furthermore, thiolated-PAA (PAA-SH) was synthesized and utilized for the first time to modify the SERS tags with a layer of negative charges for efficient pH-dependent loading and release of the anticancer drug doxorubicin. Based on the A549 human lung cancer cell model, the availability of the proposed AuNF-nanocarriers for efficient intracellular SERS imaging-guided chemo-phototherapy was studied and the results indicate that the AuNF-based drug delivery system exhibited attractive characteristics such as good stability, efficiency and pH-controlled drug loading and release, traceable and targeted delivery, as well as SERS imaging and chemo-phototherapy functions, and shows great potential for powerful SERS-imaging and as a theranostic candidate for precision nanomedicine that could achieve sensitive and accurate tumor detection and therapy.
Collapse
Affiliation(s)
- Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens Bioelectron 2017; 94:131-140. [DOI: 10.1016/j.bios.2017.02.032] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
18
|
Zhao M, Wang X, Ren S, Xing Y, Wang J, Teng N, Zhao D, Liu W, Zhu D, Su S, Shi J, Song S, Wang L, Chao J, Wang L. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21942-21948. [PMID: 28618781 DOI: 10.1021/acsami.7b05959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.
Collapse
Affiliation(s)
- Mengzhen Zhao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Xu Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Shaokang Ren
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Yikang Xing
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Jun Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Nan Teng
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Dongxia Zhao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Liu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Jiye Shi
- UCB Pharma , 208 Bath Road, Slough SL1 3WE, U.K
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), National Syngerstic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
19
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
20
|
Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles. Anal Chim Acta 2017; 969:8-17. [DOI: 10.1016/j.aca.2017.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/17/2017] [Indexed: 11/19/2022]
|
21
|
Karn-orachai K, Sakamoto K, Laocharoensuk R, Bamrungsap S, Dharakul T, Miki K. SERS-based immunoassay on 2D-arrays of Au@Ag core–shell nanoparticles: influence of the sizes of the SERS probe and sandwich immunocomplex on the sensitivity. RSC Adv 2017. [DOI: 10.1039/c7ra00154a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensitivity of immunoassay performed on SERS-active substrates can be improved by optimizing the size of SERS probes and also by decreasing the size of sandwich immunocomplex.
Collapse
Affiliation(s)
- Kullavadee Karn-orachai
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
- Faculty of Pure and Applied Sciences
- University of Tsukuba
| | - Kenji Sakamoto
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Rawiwan Laocharoensuk
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Pathumthani 12120
- Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Pathumthani 12120
- Thailand
| | - Tararaj Dharakul
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Pathumthani 12120
- Thailand
- Department of Immunology
| | - Kazushi Miki
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
- Faculty of Pure and Applied Sciences
- University of Tsukuba
| |
Collapse
|
22
|
Khlebtsov B, Pylaev T, Khanadeev V, Bratashov D, Khlebtsov N. Quantitative and multiplex dot-immunoassay using gap-enhanced Raman tags. RSC Adv 2017. [DOI: 10.1039/c7ra08113h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A highly specific, quantitative, and multiplex dot immunoassay has been developed. The immunoassay utilizes functionalized plasmonic gap-enhanced Raman tags (GERTs) as labels and nitrocellulose membrane as a substrate.
Collapse
Affiliation(s)
- Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
| | - Timophey Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
| | - Vitaly Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
| | | | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
- National Research Saratov State University
| |
Collapse
|
23
|
Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 2016; 84:15-21. [DOI: 10.1016/j.bios.2016.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 12/26/2022]
|
24
|
Sun Y, Xu L, Zhang F, Song Z, Hu Y, Ji Y, Shen J, Li B, Lu H, Yang H. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens Bioelectron 2016; 89:906-912. [PMID: 27818055 DOI: 10.1016/j.bios.2016.09.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Avian influenza viruses infect a great number of global populations every year and can lead to severe epidemics with high morbidity and mortality. Facile, rapid and sensitive detection of viruses is very crucial to control the viral spread at its early stage. In this work, we developed a novel magnetic immunosensor based on surface enhanced Raman scattering (SERS) spectroscopy to detect intact but inactivated influenza virus H3N2 (A/Shanghai/4084T/2012) by constructing a sandwich complex consisting of SERS tags, target influenza viruses and highly SERS-active magnetic supporting substrates. The procedure of sample pretreatment could be significantly simplified since the magnetic supporting substrates allowed the enrichment and separation of viruses from a complex matrix. With a portable Raman spectrometer, the immunosensor could detect H3N2 down to 102TCID50/mL (TCID50 refers to tissue culture infection dose at 50% end point), with a good linear relationship from 102 to 5×103 TCID50/mL. Considering its time efficiency, portability and sensitivity, the proposed SERS-based magnetic immunoassay is very promising for a point-of-care (POC) test in clinical and diagnostic praxis.
Collapse
Affiliation(s)
- Yang Sun
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai 200052, China; Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Li Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Fengdi Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yunwen Hu
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yongjia Ji
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jiayin Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ben Li
- Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
25
|
Yang T, Jiang J. Embedding Raman Tags between Au Nanostar@Nanoshell for Multiplex Immunosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4980-4985. [PMID: 27273763 DOI: 10.1002/smll.201600532] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/21/2016] [Indexed: 06/06/2023]
Abstract
Novel Raman tags with various reporter molecules embedded in between gold nanostar (AuNS) and gold nanoshell are developed, showing significantly enhanced surface-enhanced Raman scattering intensity compared to gold nanoparticle-based composites. Immunoassay using these AuNS@tag@shell structures is highly specific with sensitivity down to 0.1 pg mL-1 , and is capable of multiplex detection, making them highly promising for biosensing applications.
Collapse
Affiliation(s)
- Ting Yang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiang Jiang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
26
|
Chao J, Cao W, Su S, Weng L, Song S, Fan C, Wang L. Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. J Mater Chem B 2016; 4:1757-1769. [PMID: 32263053 DOI: 10.1039/c5tb02135a] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Detection of nucleic acid and protein targets related to human health and safety has attracted widespread attention. Surface-enhanced Raman scattering (SERS) is a powerful tool for biomarker detection because of its ultrahigh detection sensitivity and unique fingerprinting spectra. In this review, we first introduce the development of nanostructure-based SERS-active substrates and SERS nanotags, which greatly influence the performance of SERS biosensors. We then focus on recent advances in SERS biosensors for DNA, microRNA and protein determination, including label-free, labeled and multiplex analyses as well as in vivo imaging. Finally, the prospects and challenges of such nanostructure-based SERS biosensors are discussed.
Collapse
Affiliation(s)
- Jie Chao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Song C, Yang Y, Yang B, Min L, Wang L. Combination assay of lung cancer associated serum markers using surface-enhanced Raman spectroscopy. J Mater Chem B 2016; 4:1811-1817. [DOI: 10.1039/c5tb02780b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive and specific SERS-based combination assay of lung cancer associated serum markers is reported, and the LODs of CEA and NSE in human serum specimens are 1.48 pg mL−1 and 2.04 pg mL−1, respectively.
Collapse
Affiliation(s)
- Chunyuan Song
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- and Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University Posts & Telecommunications
- Nanjing 210023
| | - Yanjun Yang
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- and Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University Posts & Telecommunications
- Nanjing 210023
| | - Boyue Yang
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- and Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University Posts & Telecommunications
- Nanjing 210023
| | - Linghua Min
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- and Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University Posts & Telecommunications
- Nanjing 210023
| | - Lianhui Wang
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- and Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University Posts & Telecommunications
- Nanjing 210023
| |
Collapse
|
28
|
Jin L, She G, Mu L, Shi W. Highly uniform indicator-mediated SERS sensor platform for the detection of Zn2+. RSC Adv 2016. [DOI: 10.1039/c5ra28041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An indicator-mediated surface-enhanced Raman scattering (SERS) sensor platform with highly uniform SERS sensitivity was fabricated by modifying 4-mercaptopyridine (4-MPY) molecules as an indicator onto the surface of Ag nanoparticles that were anchored onto a silicon wafer.
Collapse
Affiliation(s)
- Liangliang Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
29
|
Song CY, Yang BY, Chen WQ, Dou YX, Yang YJ, Zhou N, Wang LH. Gold nanoflowers with tunable sheet-like petals: facile synthesis, SERS performances and cell imaging. J Mater Chem B 2016; 4:7112-7118. [DOI: 10.1039/c6tb01046f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoflowers with tunable sheet-like petals were controllably synthesized, and their SERS performances as well as their application in cell imaging were studied.
Collapse
Affiliation(s)
- C. Y. Song
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - B. Y. Yang
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - W. Q. Chen
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Y. X. Dou
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Y. J. Yang
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - N. Zhou
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - L. H. Wang
- Key Lab for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Synergetic Innovation Center for Organic Electronics and Information Displays
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| |
Collapse
|
30
|
Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal Bioanal Chem 2015; 407:8265-77. [DOI: 10.1007/s00216-015-8697-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/11/2023]
|
31
|
Wang Y, Sun J, Yang Q, Lu W, Li Y, Dong J, Qian W. A SERS protocol as a potential tool to access 6-mercaptopurine release accelerated by glutathione-S-transferase. Analyst 2015; 140:7578-85. [DOI: 10.1039/c5an01588j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed method for monitoring GST, an important drug metabolic enzyme, could greatly facilitate researches on relative biological fields.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- PR China
| | - Jie Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- PR China
| | - Qingran Yang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- PR China
| | - Wenbo Lu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- PR China
| | - Yan Li
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- PR China
| | - Jian Dong
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- PR China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- PR China
| |
Collapse
|