1
|
Filice S, Scuderi V, Scalese S. Sulfonated Pentablock Copolymer (Nexar TM) for Water Remediation and Other Applications. Polymers (Basel) 2024; 16:2009. [PMID: 39065326 PMCID: PMC11280590 DOI: 10.3390/polym16142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| | | | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| |
Collapse
|
2
|
Kuzminova A, Dmitrenko M, Salomatin K, Vezo O, Kirichenko S, Egorov S, Bezrukova M, Karyakina A, Eremin A, Popova E, Penkova A, Selyutin A. Holmium-Containing Metal-Organic Frameworks as Modifiers for PEBA-Based Membranes. Polymers (Basel) 2023; 15:3834. [PMID: 37765688 PMCID: PMC10534401 DOI: 10.3390/polym15183834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux).
Collapse
Affiliation(s)
- Anna Kuzminova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Mariia Dmitrenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Kirill Salomatin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Olga Vezo
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Sergey Kirichenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Semyon Egorov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Marina Bezrukova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Anna Karyakina
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Alexey Eremin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Ekaterina Popova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
- Faculty of Chemical and Biotechnology, Organic Chemistry Department, Saint-Petersburg State Institute of Technology (Technical University), 24-26/49 Letter A Moskovski Ave., St. Petersburg 190013, Russia
- Faculty of Industrial Drug Technologies, Department of Chemical Technology of Medicinal Substances, Saint-Petersburg State Chemical and Pharmaceutical University, 14 Prof. Popova Str., St. Petersburg 197022, Russia
| | - Anastasia Penkova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Artem Selyutin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| |
Collapse
|
3
|
Kim TY, Hur SM, Ramírez-Hernández A. Effect of Block Sequence on the Solution Self-Assembly of Symmetric ABCBA Pentablock Polymers in a Selective Solvent. J Phys Chem B 2023; 127:2575-2586. [PMID: 36917777 DOI: 10.1021/acs.jpcb.2c07930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Solution self-assembly of multiblock polymers offers a platform to create complex functional self-assembled nanostructures. However, a complete understanding of the effect of the different single-molecule-level parameters and solution conditions on the self-assembled morphology is still lacking. In this work, we have used dissipative particle dynamics to investigate the solution self-assembly of symmetric ABCBA linear pentablock polymers in a selective solvent and examined the effect of the block sequence, composition, and polymer concentration on the final morphology and polymer conformations. We confirmed that block sequence has an effect on the self-assembled morphologies, and it has a strong influence on polymer conformations that give place to physical gels for the sequence where the solvophilic block is located in the middle of the macromolecule. Our results are summarized in terms of morphology diagrams in the composition-concentration parameter space.
Collapse
Affiliation(s)
- Tae-Yi Kim
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
4
|
Wang SN, Huang Z, Wang JT, Ru XF, Teng LJ. PVA/UiO-66 mixed matrix membranes for n-butanol dehydration via pervaporation and effect of ethanol. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Zheng W, Liu CH, Nieh MP, Cornelius CJ. Sulfonated Pentablock Copolymer Membrane Morphological Anisotropy and Its Impact on Dimensional Swelling, Proton Conductivity, and the Transport of Protons and Water. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjian Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Chris J. Cornelius
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa50011, United States
| |
Collapse
|
6
|
Investigating the performance of functionalized and pristine graphene oxide impregnated Nexar™ nanocomposite membranes for PEM fuel cell. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Contreras-Martínez J, Mohsenpour S, Ameen AW, Budd PM, García-Payo C, Khayet M, Gorgojo P. High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42635-42649. [PMID: 34469119 DOI: 10.1021/acsami.1c09112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin film composite (TFC) membranes of the prototypical polymer of intrinsic microporosity (PIM-1) have been prepared by dip-coating on a highly porous electrospun polyvinylidene fluoride (PVDF) nanofibrous support. Prior to coating, the support was impregnated in a non-solvent to avoid the penetration of PIM-1 inside the PVDF network. Different non-solvents were considered and the results were compared with those of the dry support. When applied for the separation of n-butanol/water mixtures by pervaporation (PV), the developed membranes exhibited very high permeate fluxes, in the range of 16.1-35.4 kg m-2 h-1, with an acceptable n-butanol/water separation factor of about 8. The PV separation index (PSI) of the prepared membranes is around 115, which is among the highest PSI values that have been reported so far. Hybrid PV-distillation systems have been designed and modeled in Aspen HYSYS using Aspen Custom Modeler for setting up the PIM-1 TFC and commercial PDMS membranes as a benchmark. The butanol recovery cost for the hybrid systems is compared with a conventional stand-alone distillation process used for n-butanol/water separation, and a 10% reduction in recovery cost was obtained.
Collapse
Affiliation(s)
- Jorge Contreras-Martínez
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Sajjad Mohsenpour
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Ahmed W Ameen
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Carmen García-Payo
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com No 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
- Nanoscience and Materials Institute of Aragón (INMA) CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
TiO2-decorated NaA zeolite membranes with improved separation stability for pervaporation dehydration of N, N-Dimethylacetamide. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
|
10
|
Lo Y, Chang C, Liu H, Huang C, Shi A. Self‐Assembly of Nonfrustrated ABCBA Linear Pentablock Terpolymers. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun‐Tse Lo
- Institute of Polymer Science and Engineering National Taiwan University Taipei 10617 Taiwan, R. O. C
| | - Chin‐Hung Chang
- Institute of Polymer Science and Engineering National Taiwan University Taipei 10617 Taiwan, R. O. C
| | - Hsuan‐Hung Liu
- Institute of Polymer Science and Engineering National Taiwan University Taipei 10617 Taiwan, R. O. C
| | - Ching‐I. Huang
- Institute of Polymer Science and Engineering National Taiwan University Taipei 10617 Taiwan, R. O. C
| | - An‐Chang Shi
- Department of Physics and Astronomy McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
11
|
Thomas ER, Jain A, Mann SC, Yang Y, Green MD, Walker WS, Perreault F, Lind ML, Verduzco R. Freestanding self-assembled sulfonated pentablock terpolymer membranes for high flux pervaporation desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
|
13
|
Colón-Ortiz J, Patel SY, Berninzon A, Gabounia G, Landers JM, Neimark AV. In-situ growth and characterization of metal oxide nanoparticles within block-copolymer polyelectrolyte membranes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhang X, Li MP, Huang ZH, Zhang H, Liu WL, Xu XR, Ma XH, Xu ZL. Fast surface crosslinking ceramic hollow fiber pervaporation composite membrane with outstanding separation performance for isopropanol dehydration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Colón-Ortiz J, Ramesh P, Tsilomelekis G, Neimark AV. Permeation dynamics of dimethyl methylphosphonate through polyelectrolyte composite membranes by in-situ Raman spectroscopy. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
|
17
|
Zhang X, Zhang MX, Ding H, Yang H, Ma XH, Xu XR, Xu ZL, Tang CY. Double-Crosslinked GO Interlayer Framework as a Pervaporation Hybrid Membrane with High Performance. ACS OMEGA 2019; 4:15043-15050. [PMID: 31552346 PMCID: PMC6751692 DOI: 10.1021/acsomega.9b01833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO), as a two-dimensional structure material, has attracted widespread attention in the field of molecule sieving. However, GO-based membranes usually exhibit undesirable separation performance because the microstructure of GO is difficult to adjust. Herein, a novel double-crosslinking strategy for tuning the interlayer spacing of GO is reported. The hybrid membrane fabricated by the double-crosslinking strategy was used for pervaporation (PV) dehydration of isopropanol. To achieve high-performance of the PV hybrid membranes, the effects of operating cycles, chitosan concentration, and GO concentration were systematically investigated. The PV hybrid membranes were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle measurement, and scanning electron microscopy. The results demonstrate that the interlayer of GO can be adjusted successfully by the double-crosslinking strategy. The fabricated hybrid membrane containing 0.1 wt % GO exhibited excellent performance with a flux of 4391 g/m2h and a separation factor of 1491, which indicated that the double-crosslinking strategy may extend the applications of GO in the field of membrane separation.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, Membrane
Science and Engineering R&D Lab, Chemical Engineering Research
Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ming-Xiao Zhang
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, Membrane
Science and Engineering R&D Lab, Chemical Engineering Research
Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Ding
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, Membrane
Science and Engineering R&D Lab, Chemical Engineering Research
Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hu Yang
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, Membrane
Science and Engineering R&D Lab, Chemical Engineering Research
Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Hua Ma
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, Membrane
Science and Engineering R&D Lab, Chemical Engineering Research
Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Ru Xu
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, Membrane
Science and Engineering R&D Lab, Chemical Engineering Research
Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, Membrane
Science and Engineering R&D Lab, Chemical Engineering Research
Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chuyang Y. Tang
- UNESCO Centre for Membrane Science
and Technology, School of Chemical
Engineering and UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam Road, Hong Kong S.A.R. 999077, China
| |
Collapse
|
18
|
Akhtar FH, Vovushua H, Villalobos LF, Shevate R, Kumar M, Nunes SP, Schwingenschlögl U, Peinemann KV. Highways for water molecules: Interplay between nanostructure and water vapor transport in block copolymer membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Gao ZF, Shi GM, Cui Y, Chung TS. Organic solvent nanofiltration (OSN) membranes made from plasma grafting of polyethylene glycol on cross-linked polyimide ultrafiltration substrates. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Truong PV, Shingleton S, Kammoun M, Black RL, Charendoff M, Willis C, Ardebili H, Stein GE. Structure and Properties of Sulfonated Pentablock Terpolymer Films as a Function of Wet–Dry Cycles. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Stacy Shingleton
- Kraton Performance
Polymers, Inc., 16400 Park Row, Houston, Texas 77084, United States
| | | | - Rephayah L. Black
- Department of Chemical and Biomolecular Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996, United States
| | - Marc Charendoff
- Kraton Performance
Polymers, Inc., 16400 Park Row, Houston, Texas 77084, United States
| | - Carl Willis
- Kraton Performance
Polymers, Inc., 16400 Park Row, Houston, Texas 77084, United States
| | | | - Gila E. Stein
- Department of Chemical and Biomolecular Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
21
|
Guerre M, Uchiyama M, Lopez G, Améduri B, Satoh K, Kamigaito M, Ladmiral V. Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polym Chem 2018. [DOI: 10.1039/c7py01924f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Block copolymers containing chlorotrifluoroethylene (CTFE) are relatively rare.
Collapse
Affiliation(s)
- Marc Guerre
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Gérald Lopez
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Bruno Améduri
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Vincent Ladmiral
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 240 av du Professeur Emile Jeanbrau
| |
Collapse
|
22
|
Chen KF, Zheng PY, Wu JK, Wang NX, An QF, Lee KR. Polyelectrolyte complexes/silica hybrid hollow fiber membrane for fusel oils pervaporation dehydration processes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Liu J, Bernstein R. High-flux thin-film composite polyelectrolyte hydrogel membranes for ethanol dehydration by pervaporation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ying Y, Liu D, Zhang W, Ma J, Huang H, Yang Q, Zhong C. High-Flux Graphene Oxide Membranes Intercalated by Metal-Organic Framework with Highly Selective Separation of Aqueous Organic Solution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1710-1718. [PMID: 28001352 DOI: 10.1021/acsami.6b14371] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Graphene oxide (GO) membranes assembled by single-atom thick GO nanosheets have displayed huge potential application both in gas and liquid separation processes due to its facile and large-scale preparation resulting from various functional groups, such as hydroxyl, carboxyl, and epoxide groups. Taking advantage of these characters, GO membranes intercalated by superhydrophilic metal-organic frameworks (MOFs) as strengthening separation fillers were prepared on modified polyacrylonitrile (PAN) support by a novel pressure-assisted self-assembly (PASA) filtration technique instead of traditional vacuum filtration method for the first time. The synthesized MOF@GO membranes were characterized with several spectroscopic techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), as well as scanning electron microscopy (SEM). Compared with GO membrane, these MOF@GO membranes combine the unique properties of MOF and GO and thus have significant enhancements of pervaporation (PV) permeation flux and separation factor simultaneously for ethyl acetate/water mixtures (98/2, w/w) through the PV process, which are also superior to the reported other kinds of membranes. Especially, for MOF@GO-0.3 membrane (corresponding MOF loading: 23.08 wt %), the increments are 159% and 244%, respectively, at 303 K, and the permeate water content can reach as high as 99.5 wt % (corresponding separation factor, 9751) with a high permeation flux of 2423 g m-2 h-1. Moreover, the procedures of both the synthesis of MOF and membranes preparation are environmentally friendly that only water was used as solvent. Such a nanosized MOF-intercalating approach may be also extended to other laminated membranes, providing valuable insights in designing and developing of advanced membranes for effective separation of aqueous organic solution through nanostructure manipulation of the nanomaterials.
Collapse
Affiliation(s)
- Yunpan Ying
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Dahuan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Weixin Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Jing Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Hongliang Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Qingyuan Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Chongli Zhong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
25
|
Affiliation(s)
| | - Frank S. Bates
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Ji CH, Xue SM, Xu ZL. Novel Swelling-Resistant Sodium Alginate Membrane Branching Modified by Glycogen for Highly Aqueous Ethanol Solution Pervaporation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27243-27253. [PMID: 27682455 DOI: 10.1021/acsami.6b10053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel carbohydrate chain cross-linking method of sodium alginate (SA) is proposed in which glycogen with the branched-chain structure is utilized to cross-link with SA matrix by the bridging of glutaraldehyde (GA). The active layer of SA composite ceramic membrane modified by glycogen and GA for pervaporation (PV) demonstrates great advantages. The branched structure increases the chain density of the active layer, which compresses the free volume between the carbohydrate chains of SA. Large amounts of hydroxyl groups are consumed during the reaction with GA, which reduces the hydrogen bond formation between water molecules and the polysaccharide matrix. The two factors benefit the active layer with great improvement in swelling resistance, promoting the potential of the active layer for the dehydration of an ethanol-water solution containing high water content. Meanwhile, the modified active layer is loaded on the rigid α-Al2O3 ceramic membrane by dip-coating method with the enhancement of anti-deformation and controllable thickness of the active layer. Characterization techniques such as SEM, AFM, XRD, FTIR, XPS, and water contact angle are utilized to observe the composite structure and surface morphology of the composite membrane, to probe the free volume variation, and to determine the chemical composition and hydrophilicity difference of the active layer caused by the different glycogen additive amounts. The membrane containing 3% glycogen in the selective layer demonstrates the flux at 1250 g m-2 h-1 coupled with the separation factor of 187 in the 25 wt % water content feed solution at the operating temperature of 75 °C, reflecting superior pervaporation processing capacity compared with the general organic PV membranes in the same condition.
Collapse
Affiliation(s)
- Chen-Hao Ji
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, East China University of Science and Technology (ECUST) , 130 Meilong Road, Shanghai 200237, China
| | - Shuang-Mei Xue
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, East China University of Science and Technology (ECUST) , 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, East China University of Science and Technology (ECUST) , 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
27
|
Hua D, Chung TS, Shi GM, Fang C. Teflon AF2400/Ultem composite hollow fiber membranes for alcohol dehydration by high-temperature vapor permeation. AIChE J 2016. [DOI: 10.1002/aic.15158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Hua
- NUS Graduate School for Integrative Science and Engineering; National University of Singapore, Singapore; 117456 Singapore
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore, Singapore; 117585 Singapore
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering; National University of Singapore, Singapore; 117456 Singapore
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore, Singapore; 117585 Singapore
| | - Gui Min Shi
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore, Singapore; 117585 Singapore
| | - Chao Fang
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore, Singapore; 117585 Singapore
| |
Collapse
|
28
|
Gahlot S, Sharma PP, Bhil BM, Gupta H, Kulshrestha V. GO/SGO Based SPES Composite Membranes for the Removal of Water by Pervaporation Separation. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/masy.201400238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Swati Gahlot
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Gijubhai Badheka Marg Bhavnagar 64002 India
| | - Prem P. Sharma
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Gijubhai Badheka Marg Bhavnagar 64002 India
| | - Batuk M. Bhil
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Gijubhai Badheka Marg Bhavnagar 64002 India
| | - Hariom Gupta
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Gijubhai Badheka Marg Bhavnagar 64002 India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Gijubhai Badheka Marg Bhavnagar 64002 India
| |
Collapse
|
29
|
Hua D, Chung TS. Universal surface modification by aldehydes on polymeric membranes for isopropanol dehydration via pervaporation. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Ying Y, Xiao Y, Ma J, Guo X, Huang H, Yang Q, Liu D, Zhong C. Recovery of acetone from aqueous solution by ZIF-7/PDMS mixed matrix membranes. RSC Adv 2015. [DOI: 10.1039/c4ra15771k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mixed matrix membrane containing ZIF-7 exhibits the excellent performance in the recovery of acetone from fermentation broths.
Collapse
Affiliation(s)
- Yunpan Ying
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuanlong Xiao
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jing Ma
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiangyu Guo
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hongliang Huang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Qingyuan Yang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dahuan Liu
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Chongli Zhong
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|