1
|
Yang M, Jin H, Sun Z, Gui R. Monoelemental two-dimensional boron nanomaterials beyond theoretical simulations: From experimental preparation, functionalized modification to practical applications. Adv Colloid Interface Sci 2022; 304:102669. [PMID: 35429719 DOI: 10.1016/j.cis.2022.102669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
During the past decade, there is an explosive growth of theoretical and computational studies on 2D boron-based nanomaterials. In terms of extensive predictions from theoretical simulations, borophene, boron nanosheets and 2D boron derivatives show excellent structural, electronic, photonic and nonlinear optical characteristics, and potential applications in a wide range of fields. In recent years, previous studies have reported the successful experimental preparations, superior properties, multi-functionalized modifications of various 2D boron and its derivatives, which show many practical applications in significant fields. To further promote the ever-increasing experimental studies, this present review systematically summarizes recent progress on experimental preparation methods, functionalized modification strategies and practical applications of 2D boron-based nanomaterials and multifunctional derivatives. Firstly, this review summarizes the experimental preparation methods, including molecular beam epitaxy, chemical vapor deposition, liquid-phase exfoliation, chemical reaction, and other auxiliary methods. Then, various strategies for functionalized modification are introduced overall, focusing on borophene derivatives, boron-based nanosheets, atom-introduced, chemically-functionalized borophene and boron nanosheets, borophene or boron nanosheet-based heterostructures, and other functionalized 2D boron nanomaterials. Subsequently, various potential applications are discussed in detail, involving energy storage, catalysis conversion, photonics, optoelectronics, sensors, bio-imaging, biomedicine therapy, and adsorption. We comment the state-of-the-art related studies concisely, and also discuss the current status, probable challenges and perspectives rationally. This review is timely, comprehensive, in-depth and highly attractive for scientists from multiple disciplines and scientific fields, and can facilitate further development of advanced functional low-dimensional nanomaterials and multi-functionalized systems toward high-performance practical applications in significant fields.
Collapse
|
2
|
He J, Zheng B, Xie Y, Qian YY, Zhang J, Wang K, Yang L, Yu HT. Effects of adatom species on the structure, stability, and work function of adatom-α-borophene nanocomposites. Phys Chem Chem Phys 2022; 24:8923-8939. [PMID: 35373802 DOI: 10.1039/d2cp00506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Work function-tunable borophene-based electrode materials are of significant importance because they promote efficient carrier extraction/injection, thereby enabling electronic devices to achieve maximum energy conversion efficiency. Accordingly, determining the work function of adatom-borophene nanocomposites within a series wherein the adatom is systematically changed will facilitate the design of such materials. In this study, we theoretically determined that the M-B bond length, binding energy, electron transfer between adatoms and BBP, and work function (ϕ) are linearly dependent on the ionization potential (IP) and electronegativity for thermodynamically and kinetically stable adatom-α-borophene (M/BBP) systems involving a series of alkali (earth) metal/BBP (M = Li-Cs; Be-Ba) and halogen/BBP (M = F-I), respectively. However, the binding energies of Li/BBP and Be/BBP deviate from these dependencies owing to their super small adatoms and the resulting significantly enhanced effective M-B bonding areas. By interpreting the electron transfer picture among the different parts of M/BBP, we confirmed that metallic M/BBP possesses ionic sp-p and dsp-p M-B bonds in alkali (earth) metal/BBP but covalent-featured ionic p-p interactions in halogen/BBP. In particular, the direct proportionality between IP and ϕ for alkali (earth) metal/BBP originates from the synergistic effect of charge rearrangement and the increased induced dipole moment; however, the inverse proportionality between electronegativity and ϕ for halogen/BBP arises from the adsorption induced charge redistribution. Our results provide guidance for experimental efforts toward the realization of work function-tunable borophene-based electrodes as well as insight into the bonding rules between various adatoms and α-borophene.
Collapse
Affiliation(s)
- Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Yin-Yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Jiao Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Ke Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China.,School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hai-Tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| |
Collapse
|
3
|
Qian YY, Zheng B, Xie Y, He J, Chen JM, Yang L, Lu X, Yu HT. Imparting α-Borophene with High Work Function by Fluorine Adsorption: A First-Principles Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11027-11040. [PMID: 34498881 DOI: 10.1021/acs.langmuir.1c01598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing the work function of borophene over a large range is crucial for the development of borophene-based anode materials for highly efficient electronic devices. In this study, the effect of fluorine adsorption on the structures and stabilities, particularly on the work function, of α-borophene (BBP), was systematically investigated via first-principles density functional theory. The calculations indicated that BBP was well-stabilized by fluorine adsorption and the work functions of metallic fluorine-adsorbed BBPs (Fn-BBPs) sharply increased with increasing fluorine content. Moreover, the work function of F-BBP was close to that of the frequently used anode material Au and even, for other Fn-BBPs, higher than that of Pt. Furthermore, we have comprehensively discussed the factors, including substrate deformation, charge transfer, induced dipole moment, and Fermi and vacuum energy levels, affecting the improvement of work function. Particularly, we have demonstrated that the charge redistribution of the substrate induced by the bonding interaction between fluorine and the matrix predominantly contributes to the observed increase in the work function. Additionally, the effect of fluorine adsorption on the increase in the work function of BBP was significantly stronger than that of silicene or graphene. Our results concretely support the fact that Fn-BBPs can be extremely attractive anode materials for electronic device applications.
Collapse
Affiliation(s)
- Yin-Yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jia-Min Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai-Tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
4
|
Zheng B, Xie Y, Deng Y, Wang Z, Lou Y, Qian Y, He J, Yu H. Highly Effective Work Function Reduction of α‐Borophene via Caesium Decoration: A First‐Principles Investigation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Ying‐yi Deng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Zhao‐qi Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- College of Physics Sichuan University Chengdu 610065 P. R. China
| | - Yuan‐qing Lou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Yin‐yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Hai‐tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
5
|
Zheng B, Qiao L, Yu HT, Wang QY, Xie Y, Qu CQ. Enhanced field-emission properties of buckled α-borophene by means of Li decoration: a first-principles investigation. Phys Chem Chem Phys 2018; 20:15139-15148. [PMID: 29789848 DOI: 10.1039/c8cp01048j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the structures and field-emission properties of Li-decorated buckled α-borophene (BBP) were investigated by first-principles density functional theory at the PW91 level. Using the computed binding energies, Hirshfeld- and electrostatic potential-derived charges, induced dipole moments, densities of states, and ionization potentials, we evaluated the influence of an applied electric field on the structural stability, work function, and field-emission current of the Li-decorated BBP nanostructures. Furthermore, we also explored the quantitative dependence of the emission current on the electric field, Li concentration, and molecular orbitals. The computed results indicated that increasing the electric field and Li concentration has a considerably positive effect on the field-emission performance of the Li-decorated BBPs. Besides advantages including small work functions and low ionization potentials, most remarkably, the field-emission current can be as high as 48.81 μA in Li4/BBP (supercell with 36 atoms only) under a rather small applied electric field of 0.05 V Å-1, which rivals the highest value of the graphene-BN nanocomposite among all the theoretical nanostructures presented to date. Our results highly support the fact that Li-decorated BBPs can be appealing field-emission cathode materials with an extremely high emission current.
Collapse
Affiliation(s)
- Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | | | | | | | | | | |
Collapse
|
6
|
Gunda H, Das SK, Jasuja K. Simple, Green, and High‐Yield Production of Boron‐Based Nanostructures with Diverse Morphologies by Dissolution and Recrystallization of Layered Magnesium Diboride Crystals in Water. Chemphyschem 2018; 19:880-891. [DOI: 10.1002/cphc.201701033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Harini Gunda
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Saroj Kumar Das
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Kabeer Jasuja
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| |
Collapse
|
7
|
Structures, stabilities and work functions of alkali-metal-adsorbed boron α
1-sheets. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7038-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Shao P, Duan X, Xu J, Tian J, Shi W, Gao S, Xu M, Cui F, Wang S. Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:532-539. [PMID: 27776864 DOI: 10.1016/j.jhazmat.2016.10.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Recently, tremendous efforts have been devoted to developing carbon-based metal-free catalysts as an alternative to metal-based catalysts for remediation of emerging contaminants. However, further investigations have demonstrated that the durability of carbocatalysts is poor. Therefore, it is extremely desirable to seek a novel metal-free catalyst with high efficiency and superb stability. Herein, we first discovered that amorphous boron (A-boron) can be used as a metal-free catalyst for peroxymonosulfate (PMS) activation to produce free radicals for effective degradation of bisphenol S (BPS), which is a newly-occurring estrogenic endocrine-disrupting chemical. It exhibited outstanding catalytic activity and superior stability as comparing to metal-based and metal-free carbon-based catalysts. Moreover, many other typical organic pollutants in water such as bisphenol F, sulfamethoxazole, rhodamine B and methyl orange can also be effectively decomposed in A-boron/PMS oxidative system. The effects of reaction parameters on BPS degradation were systematically investigated. The catalytic oxidation mechanism was proposed. The intriguing catalytic feature of A-boron discovered in this study will provide new opportunities for the future development of A-boron based materials with promising applications in water remediation.
Collapse
Affiliation(s)
- Penghui Shao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaoguang Duan
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Jun Xu
- Department of Civil Engineering and Architecture, Nanyang Normal University, Nanyang 473061, PR China; State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, PR China.
| | - Jiayu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shanshan Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mingjun Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fuyi Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shaobin Wang
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
9
|
Zheng B, Yu HT, Lian YF, Xie Y. Novel α- and β-type boron sheets: Theoretical insight into their structures, thermodynamic stability, and work functions. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.01.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wu C, Wang H, Zhang J, Gou G, Pan B, Li J. Lithium-Boron (Li-B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2526-2532. [PMID: 26732306 DOI: 10.1021/acsami.5b09949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent works demonstrated that the superconductivity at two-dimensional (2-D) can be achieved in Li-decorated graphene (Nature Phys. 2012, 8, 131 and Proc. Natl. Acad. Sci. 2015, 112, 11795). Inspired by the progress made in graphene, we predict by using the first-principles calculations that Li-incorporated B monolayers (Li-B monolayers) can be alternative 2-D superconductors. First-principles cluster expansion approach was used to evaluate the structural diversity and energetic stability of the 2-D Li-B monolayers by treating them as ternary Lix⬡yB1-x-y pseudoalloys (⬡ refers to B hexagonal hole). After thoroughly exploring the Li-B configuration space, several well-ordered and stable Li-B monolayers were identified. Detailed analyses regarding the electronic structures and lattice dynamics properties of the predicted Li-B monolayers were performed. Compared with the non-superconducting pure B-sheet, some predicted Li-B monolayers can exhibit the phonon-mediated superconducting properties above the liquid helium temperature.
Collapse
Affiliation(s)
- Chao Wu
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Hua Wang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Jiajia Zhang
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Gaoyang Gou
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Bicai Pan
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Ju Li
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Li XB, Xie SY, Zheng H, Tian WQ, Sun HB. Boron based two-dimensional crystals: theoretical design, realization proposal and applications. NANOSCALE 2015; 7:18863-18871. [PMID: 26523799 DOI: 10.1039/c5nr04359j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The successful realization of free-standing graphene and the various applications of its exotic properties have spurred tremendous research interest for two-dimensional (2D) layered materials. Besides graphene, many other 2D materials have been successfully produced by experiment, such as silicene, monolayer MoS2, few-layer black phosphorus and so on. As a neighbor of carbon in the periodic table, element boron is interesting and many researchers have contributed their efforts to realize boron related 2D structures. These structures may be significant both in fundamental science and future technical applications in nanoelectronics and nanodevices. In this review, we summarize the recent developments of 2D boron based materials. The theoretical design, possible experimental realization strategies and their potential technical applications are presented and discussed. Also, the current challenges and prospects of this area are discussed.
Collapse
Affiliation(s)
- Xian-Bin Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | | | | | | | | |
Collapse
|
12
|
First-principles study on the electronic and bonding properties of PbTiO3 (110) polar terminations. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|