1
|
Sarwar S, Bashir S, Asim MH, Ikram F, Ahmed A, Omema U, Asif A, Chaudhry AA, Hu Y, Ustundag CB. In-depth drug delivery to tumoral soft tissues via pH responsive hydrogel. RSC Adv 2022; 12:31402-31411. [PMID: 36348995 PMCID: PMC9627957 DOI: 10.1039/d2ra05639a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
A pH responsive nanoparticle–hydrogel hybrid drug delivery system was investigated for in-depth anticancer drug delivery to solid tumours. It consists of acid susceptible polymer nanoparticles loaded in a chitosan hydrogel. The hybrid formulation was characterized by UV-visible spectroscopy, FTIR, SEM, TEM, particle size analysis, zeta potential measurement and viscosity measurement. Drug encapsulation and nanoparticle loading efficiencies were found to be 48% and 72% respectively which describes the efficient interaction of the chemical entities in this hybrid drug delivery system. The hydrogel exhibited pH responsive behaviour: minimal drug and nanoparticle release at physiological pH but an increase in viscosity under acidic conditions and fast nanoparticle and drug release. The cytotoxicity of the drug loaded hydrogel was investigated against the MCF-7 breast cancer cell line along with the drug and nanoparticles without hydrogel. The drug loaded hydrogel showed a better cytotoxic effect on MCF-7 cancer cells. Thus, drug loaded nanoparticles containing hydrogel could be a better option for maximum drug distribution in tumours. A pH responsive nanoparticle–hydrogel hybrid drug delivery system was investigated for in-depth anticancer drug delivery to solid tumours.![]()
Collapse
Affiliation(s)
- Shumaila Sarwar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Sajid Bashir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Ume Omema
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Yong Hu
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Turkey
| |
Collapse
|
2
|
Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and "stealthy" surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci 2021; 16:444-458. [PMID: 34703494 PMCID: PMC8520042 DOI: 10.1016/j.ajps.2020.07.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The present review sets out to discuss recent developments of the effects and mechanisms of carrier properties on their circulation time. For most drugs, sufficient in vivo circulation time is the basis of high bioavailability. Drug carrier plays an irreplaceable role in helping drug avoid being quickly recognized and cleared by mononuclear phagocyte system, to give drug enough time to arrive at targeted organ and tissue to play its therapeutic effect. The physical and chemical properties of drug carriers, such as size, shape, surface charge and surface modification, would affect their in vivo circulation time, metabolic behavior and biodistribution. The final circulation time of carriers is determined by the balance between macrophage recognitions, blood vessel penetration and urine excretion. Therefore, when designing the drug delivery system, we should pay much attention to the properties of drug carriers to get enough in vivo circulation time to arrive at target site eventually. This article mainly reviews the effect of carrier size, size, surface charge and surface properties on its circulation time in vivo, and discusses the mechanism of these properties affecting circulation time. This review has reference significance for the research of long-circulation drug delivery system.
Collapse
Affiliation(s)
- Jinwei Di
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yimeng Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
3
|
Shahzadi A, Ikram F, Subhani RUH, Ahmed A, Asif A, Fatima N, Chaudhry AA, Hu Y. Acid susceptible polymeric stealthy nanoparticles for improved anticancer drug delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1683556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anam Shahzadi
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | | | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Yong Hu
- Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, Asif A, Rahman SU, Chaudhry AA, Rehman IU. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 2020; 18:1-24. [PMID: 32905714 DOI: 10.1080/17425247.2020.1822321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The utilization of polymeric nanoparticles, as drug payloads, has been extensively prevailed in cancer therapy. However, the precise distribution of these nanocarriers is restrained by various physiological and cellular obstacles. Nanoparticles must avoid nonspecific interactions with healthy cells and in vivo compartments to circumvent these barriers. Since in vivo interactions of nanoparticles are mainly dependent on surface properties of nanoparticles, efficient control on surface constituents is necessary for the determination of nanoparticles' fate in the body. AREAS COVERED In this review, the surface-modified polymeric nanoparticles and their utilization in cancer treatment were elaborated. First, the interaction of nanoparticles with numerous in vivo barriers was highlighted. Second, different strategies to overcome these obstacles were described. Third, some inspiring examples of surface-modified nanoparticles were presented. Later, fabrication and characterization methods of surface-modified nanoparticles were discussed. Finally, the applications of these nanoparticles in different routes of treatments were explored. EXPERT OPINION Surface modification of anticancer drug-loaded polymeric nanoparticles can enhance the efficacy, selective targeting, and biodistribution of the anticancer drug at the tumor site.
Collapse
Affiliation(s)
- Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Shumaila Sarwar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan.,Faculty of Pharmacy, University of Sargodha , Sargodha, Pakistan
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing, Jiangsu, China
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University , Sakaka, Aljouf, Saudi Arabia
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences , Bahawalpur, Pakistan
| | - Fakhera Ikram
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan
| | - Ihtasham Ur Rehman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad , Lahore, Pakistan.,Bioengineering, Engineering Department, Lancaster University , Lancaster, UK
| |
Collapse
|
5
|
Xu B, Zhu YJ, Wang CH, Qiu C, Sun J, Yan Y, Chen X, Wang JC, Zhang Q. Improved Cell Transfection of siRNA by pH-Responsive Nanomicelles Self-Assembled with mPEG- b-PHis- b-PEI Copolymers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21847-21860. [PMID: 29882640 DOI: 10.1021/acsami.8b04301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, the novel pH-responsive nanomicelles self-assembled with amphipathic meo-poly(ethylene glycol)- b-poly(l-histidine)- b-polyethylenimine (mPEG- b-PHis- b-PEI, EHE) copolymers based on hydrophobic interaction of PHis with deprotonation of imidazoles were developed for siRNA transfection. The cationic nanomicelles could electrostatically compact siRNA into stable EHE/siRNA nanoplexes with a hydrodynamic diameter of ∼190 nm and present a low toxicity in normal physiological condition (pH ∼ 7.4). Different from pH-irresponsive ECE/siRNA nanoplexes based on mPEG- b-poly(ε-caprolactone)- b-PEI (ECE), the EHE/siRNA nanoplexes exhibited a higher cellular uptake along with an increased ζ-potential (from +18 to +32 mV) when the pH changed from 7.4 to 6.8 (extracellular acidic microenvironments). After cell internalization, the EHE/siRNA nanoplexes also exhibited an enhanced nanostructural disassembling and release of siRNA from lysosomal acidic microenvironments (pH ∼ 5.5). Furthermore, it was demonstrated that the EHE/siEGFR nanoplexes downregulated the expression levels of the corresponding mRNA and protein more efficiently than ECE/siEGFR in HeLa cells. The improved siRNA silencing effects of EHE/siEGFR nanoplexes resulted from the higher cellular uptake and enhanced endosomal/lysosomal escape, which is associated with the pH-responsive disassembly of nanostructure as well as the synergistic "proton sponge" effects of PHis and PEI in EHE copolymers. Therefore, the pH-responsive EHE nanomicelles would be promising and potential carriers for cell transfection of siRNA.
Collapse
Affiliation(s)
- Bin Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Yuan-Jun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Cheng-Han Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Chong Qiu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Jing Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Xin Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xueyuan Road 38 , Beijing 100191 , China
| |
Collapse
|
6
|
Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 132:169-187. [PMID: 30009884 DOI: 10.1016/j.addr.2018.07.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Nanoparticles for biomedical applications are generally formed by bottom-up approaches such as self-assembly, emulsification and precipitation. But these methods usually have critical limitations in fabrication of nanoparticles with controllable morphologies and monodispersed size. Compared with bottom-up methods, top-down nanofabrication techniques offer advantages of high fidelity and high controllability. This review focuses on top-down nanofabrication techniques for engineering particles along with their biomedical applications. We present several commonly used top-down nanofabrication techniques that have the potential to fabricate nanoparticles, including photolithography, interference lithography, electron beam lithography, mold-based lithography (nanoimprint lithography and soft lithography), nanostencil lithography, and nanosphere lithography. Varieties of current and emerging applications are also covered: (i) targeting, (ii) drug and gene delivery, (iii) imaging, and (iv) therapy. Finally, a future perspective of the nanoparticles fabricated by the top-down techniques in biomedicine is also addressed.
Collapse
|
7
|
Zhang Y, Yi M, Bao Y, Zhang S. Fabrication of micelles from poly(butylene succinate) and poly(2-methacryloyloxyethyl phosphorylcholine) copolymers as a potential drug carrier. POLYM INT 2017. [DOI: 10.1002/pi.5482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yucheng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Yi Bao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an China
| |
Collapse
|
8
|
Wang W, Wang B, Liu S, Shang X, Yan X, Liu Z, Ma X, Yu X. Bioreducible Polymer Nanocarrier Based on Multivalent Choline Phosphate for Enhanced Cellular Uptake and Intracellular Delivery of Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15986-15994. [PMID: 28481098 DOI: 10.1021/acsami.7b03317] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited cellular uptake and inefficient intracellular drug release severely hamper the landscape of polymer drug nanocarriers in cancer chemotherapy. Herein, to address these urgent challenges in tumor treatment simultaneously, we integrated the multivalent choline phosphate (CP) and bioreducible linker into a single polymer chain, designed and synthesized a neoteric bioreducible polymer nanocarrier. The excellent hydrophility of these zwitterionic CP groups endowed high drug loading content and drug loading efficiency of doxorubicin to this drug delivery system (∼22.1 wt %, ∼95.9%). Meanwhile, we found that the multivalent choline phosphate can effectively enhance the internalization efficiency of this drug-loaded nanocarrier over few seconds, and the degree of improvement depended on the CP density in a single polymer chain. In addition, after these nanocarriers entered into the tumor cells, the accelerated cleavage of bioreducible linker made it possible for more cargo escape from the delivery system to cytoplasm to exert their cytostatic effects more efficiently. The enhanced therapeutic efficacy in various cell lines indicated the great potential of this system in anticancer drug delivery applications.
Collapse
Affiliation(s)
- Wenliang Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Bo Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Sanrong Liu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xudong Shang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - XinXin Yan
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University , Guangzhou 510632, P.R. China
| | - Xiaojing Ma
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xifei Yu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| |
Collapse
|
9
|
Yu H, He J, Lu Q, Huo D, Yuan S, Zhou Z, Xu P, Hu Y. Anti-Fas Antibody Conjugated Nanoparticles Enhancing the Antitumor Effect of Camptothecin by Activating the Fas-FasL Apoptotic Pathway. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29950-29959. [PMID: 27754664 DOI: 10.1021/acsami.6b09760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Emerging evidence suggest that the introduction of Fas ligand (FasL) can enhance the Fas-dependent apoptosis and induce durable immune responses against tumor. However, selective triggering of apoptosis in tumor cells while sparing normal cells remains a great challenge for the application of FasL-based therapeutic strategies. Herein, smart nanoparticles (NPs) with a sandwich structure were fabricated. These NPs consist of a matrix metalloproteinase (MMP) cleavable PEG outer layer, an anti-Fas antibody middle layer, and a camptothecin (CPT)-loaded inner core. They could accumulate at a tumor site by the enhanced permeability and retention (EPR) effect. The removable PEG layer protects the cytotoxic anti-Fas antibody from premature contact with normal tissues, thus avoiding the unexpected lethal side effect before they reach the tumor site. Due to the high level of MMP expressed by tumor cells inside the tumor tissue, these NPs would shed their PEG layers, resulting in the exposure of anti-Fas antibody to bind the Fas receptor and triggering the apoptosis of tumor cells. Results of Western blot confirmed that these NPs could mimic the function of activated cytotoxic lymphocyte (CTL) to activate the Fas-FasL apoptosis pathway of tumor cells. With the aid of CPT payload, these anti-Fas antibody conjugated NPs achieved a high tumor inhibition in the B16 allograft tumor animal model. The design of these NPs provides a method for delivering cytotoxic ligand to targeting tissue, which may be valuable in cancer therapy.
Collapse
Affiliation(s)
- Hongliang Yu
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | | | - Qian Lu
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | - Da Huo
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | - Shanmei Yuan
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | | | | | - Yong Hu
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| |
Collapse
|
10
|
Deng X, Yin Z, Zhou Z, Wang Y, Zhang F, Hu Q, Yang Y, Lu J, Wu Y, Sheng W, Zeng Y. Carboxymethyl Dextran-Stabilized Polyethylenimine-Poly(epsilon-caprolactone) Nanoparticles-Mediated Modulation of MicroRNA-34a Expression via Small-Molecule Modulator for Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17068-17079. [PMID: 27300477 DOI: 10.1021/acsami.6b03122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNA-34a (miR-34a) modulation therapy has shown great promise to treat hepatocellular carcinoma (HCC). 2'-Hydroxy-2,4,4',5,6'-pentamethoxychalcone, termed Rubone, has been shown to specifically upregulate miR-34a expression in HCC cells and considered as novel anticancer agent. However, the extremely low aqueous solubility of Rubone hampers its use in cancer treatment. In the present study, surface-stabilized nanoparticles-based delivery strategy was engaged to overcome this impediment. In our preparation, Rubone was encapsulated in the micelles composed of polyethylenimine-poly(epsilon-caprolactone) (PEI-PCL) through hydrophobic interactions, which were subsequently stabilized with anionic carboxymethyl dextran CMD via electronic interaction. We found that Rubone-encapsulating nanoparticles are dispersed well in aqueous solution. The results further demonstrated that Rubone could be efficiently delivered in HCC cells by nanoparticles and upregulate miR-34a expression, which in turn led to inhibition of proliferation, migration, and increased apoptosis of HCC cells. In vivo experiments showed that Rubone can be preferentially delivered into tumor tissues by CMD-stabilized PEI-PCL nanoparticles after intravenous administration and significantly inhibited tumor growth. Furthermore, low cytotoxicity of the nanoparticles was observed in vitro and in vivo analyses, indicating a good compatibility of generated nanoparticles. The obtained results suggest that CMD-stabilized PEI-PCL nanoparticles may serve as a novel approach for small-molecule-modulator-mediated miR-34a restoration for HCC therapy.
Collapse
Affiliation(s)
- Xiongwei Deng
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Zhaoxia Yin
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Zhixiang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Yihui Wang
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Fang Zhang
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Qin Hu
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Wang Sheng
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| | - Yi Zeng
- College of Life Science and Bioengineering, Beijing University of Technology , No. 100 Pingleyuan, Chaoyang District, Beijing 100124, People's Republic of China
| |
Collapse
|
11
|
You H, Fu S, Qin X, Yu Y, Yang B, Zhang G, Sun X, Feng Y, Chen Y, Wu J. A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma. Colloids Surf B Biointerfaces 2015; 140:150-160. [PMID: 26752212 DOI: 10.1016/j.colsurfb.2015.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 12/09/2022]
Abstract
In this study, Hydroxycamptothecin (HCPT)-loaded micelles were formed in water by the self-assembly of folate (FA)-decorated amphiphilic block copolymer, methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL), and achieved a hydrodynamic diameter about of 132 nm. HCPT release from the micelles exhibited no initial burst but showed a sustained release profile. The cytotoxicity and targeting ability of FA conjugated polymeric micelles was investigated by using methylthiazoletetrazolium (MTT) and fluorescence microscopy. We found that FA-conjugated micelles had superior cytotoxicity against HeLa cells compared to non-conjugated micelles, and that they exerted this effect by folate receptor (FR)-mediated endocytosis. In addition, HeLa cells were xenografted into nude mice and subjected to radiotherapy (RT) and/or HCPT-loaded micelle treatment. The antitumor efficacy was detected by analysis of tumor growth delay (TGD) and median survival time. Micro fluorine-18-deoxyglucose PET/computed tomography ((18)F-FDG PET/CT) was performed to assess early tumor response to HCPT-loaded micelles in combination with RT. Analysis of cell cycle redistribution, apoptosis and expression of histone H2AX phosphorylation (λ-H2AX) was used to evaluate the mechanism by which HCPT loaded micelles led to radiosensitization. Taken together, the results showed that HCPT-loaded FA decorated micelles efficiently sensitized xenografts in mice to RT, and induced G2/M phase arrest, apoptosis and expression of λ-H2AX.
Collapse
Affiliation(s)
- Hong You
- Department of Oncology, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China.
| | - XingHu Qin
- Department of Neurosurgery, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - YanXin Yu
- Department of Oncology, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Bo Yang
- Department of Oncology, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - GuangPeng Zhang
- Department of Oncology, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - XiaoYang Sun
- Department of Oncology, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Yue Feng
- Department of Nuclear Medicine, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Yue Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - JingBo Wu
- Department of Oncology, the First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China.
| |
Collapse
|