1
|
Jamil A, Abidin SZ, Razak KA, Zin H, Yunus MA, Rahman WN. Radiosensitization effects by bismuth oxide nanorods of different sizes in megavoltage external beam radiotherapy. Rep Pract Oncol Radiother 2021; 26:773-784. [PMID: 34760312 DOI: 10.5603/rpor.a2021.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nanotechnology application has successfully reached numerous scientific breakthroughs including in radiotherapy. However, the clinical application of nanoparticles requires more diligent research primarily on the crucial parameters such as nanoparticle sizes. This study is aimed to investigate the influence of bismuth oxide nanorod (Bi2O3-NR) sizes on radiosensitization effects on MCF-7 and HeLa cell lines for megavoltage photon and electron beam radiotherapy. Materials and methods MCF-7 and HeLa cells were treated with and without 0.5 μMol/L of Bi2O3-NR of varying sizes (60, 70, 80, and 90 nm). The samples, including the control groups, were exposed to different radiation doses (0-10 Gy), using photon (6 MV and 10 MV), and electron beam (6 MeV and 12 MeV) radiotherapy. Clonogenic assay was performed, and sensitization enhancement ratio (SER) was determined from linear quadratic based cell survival curves. Results The results depicted that 60 nm Bi2O3-NR yields the most excellent SER followed by 70 nm Bi2O3-NR. Meanwhile, the 80 and 90 nm Bi2O3-NR showed an insignificant difference between treated and untreated cell groups. This study also found that MCF-7 was subjected to more cell death compared to HeLa. Conclusion 60 nm Bi2O3-NR was the optimal Bi2O3-NR size to induce radiosensitization effects for megavoltage external beam radiotherapy. The SER in photon beam radiotherapy marked the highest compared to electron beam radiotherapy due to decreased primary radiation energy from multiple radiation interaction and higher Compton scattering.
Collapse
Affiliation(s)
- Amirah Jamil
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Safri Zainal Abidin
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.,Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Hafiz Zin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang Malaysia
| | - Muhammad Amir Yunus
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang Malaysia
| | - Wan Nordiana Rahman
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
2
|
Wang X, Niu X, Sha W, Feng X, Yu L, Zhang Z, Wang W, Yuan Z. An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomater Sci 2021; 9:6308-6324. [PMID: 34519724 DOI: 10.1039/d1bm00834j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As an excellent candidate material for nano-sensitizers, gold nanostructures have shown great potential in radiotherapy. Nevertheless, severe hypoxia and low accumulation of nanomedicine caused by poor perfusion at the tumor site have significantly reduced radiotherapy efficacy. Vascular normalization has gained attention owing to its ability to relieve hypoxia and increase perfusion. The synergistic therapy of tumor vascular normalization and radiotherapy has become a new option to increase anti-cancer efficacy. However, the commonly used strategy of suppressing a single growth factor to induce vascular normalization is limited by tumor compensatory effects. In this work, we developed a strategy to inhibit oxidative stress in tumors by generating chelating agents in response to hydrogen peroxide, thereby inhibiting multi-angiogenic factors simultaneously to normalize blood vessels. Concretely, sodium alginate (SA) reacted with 8-quinoline boric acid (QBA) to form SA-QBA. Then gold nanoparticles (Au NPs) were modified with SA-QBA to obtain Au@SA-QBA. The system was simple in structure and could generate 8HQ in response to H2O2in vitro to inhibit oxidative stress and reduce the expression of VEGF, bFGF, and Ang-2. In vivo, the perfusion unit (PU) increased by 78% after Au@SA-QBA treatment, and the coverage of pericytes increased by 32%, which in turn induced vascular normalization. In addition, blood routine and blood biochemical tests confirmed its good biocompatibility and 8HQ was not detected in the supernatant after homogenization of major organs. More importantly, after the synergistic treatment of vascular normalization and radiotherapy (4 Gy), the tumor growth inhibition rate was increased by 38.6% compared to the Au@SA-treated group with negligible side effects to normal tissues.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Weizhou Sha
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyue Feng
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Sundaram A, Peng L, Chai L, Xie Z, Ponraj JS, Wang X, Wang G, Zhang B, Nie G, Xie N, Rajesh Kumar M, Zhang H. Advanced nanomaterials for hypoxia tumor therapy: challenges and solutions. NANOSCALE 2020; 12:21497-21518. [PMID: 33094770 DOI: 10.1039/d0nr06271e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent years, nanomaterials and nanotechnology have emerged as vital factors in the medical field with a unique contribution to cancer medicine. Given the increasing number of cancer patients, it is necessarily required to develop innovative strategies and therapeutic modalities to tackle hypoxia, which forms a hallmark and great barrier in treating solid tumors. The present review details the challenges in nanotechnology-based hypoxia, targeting the strategies and solutions for better therapeutic performances. The interaction between hypoxia and tumor is firstly introduced. Then, we review the recently developed engineered nanomaterials towards multimodal hypoxia tumor therapies, including chemotherapy, radiotherapy, and sonodynamic treatment. In the next part, we summarize the nanotechnology-based strategies for overcoming hypoxia problems. Finally, current challenges and future directions are proposed for successfully overcoming the hypoxia tumor problems.
Collapse
Affiliation(s)
- Aravindkumar Sundaram
- Department of Orthopaedic Surgery, the Sixth Affiliated Hospital of Guangzhou Medical University, 511508 Qingyuan, Guangdong, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
5
|
Nosrati H, Charmi J, Abhari F, Attari E, Bochani S, Johari B, Rezaeejam H, Kheiri Manjili H, Davaran S, Danafar H. Improved synergic therapeutic effects of chemoradiation therapy with the aid of a co-drug-loaded nano-radiosensitizer under conventional-dose X-ray irradiation. Biomater Sci 2020; 8:4275-4286. [DOI: 10.1039/d0bm00353k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The goal of this work is to harness the advantages of a targeted hybrid nanostructure, BSA-coated Fe3O4 (F)-Au heterodimer, as a radiosensitizer and co-delivery vehicle of chemotherapeutic drugs for enhanced synergic cancer therapy and protection of healthy tissues.
Collapse
Affiliation(s)
- Hamed Nosrati
- Zanjan Pharmaceutical Nanotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
- Department of pharmaceutical biomaterials
| | - Jalil Charmi
- Zanjan Pharmaceutical Nanotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Fatemeh Abhari
- Faculty of Medicine
- Department of Medical Physics
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Elahe Attari
- Zanjan Pharmaceutical Nanotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Shayesteh Bochani
- Zanjan Pharmaceutical Nanotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Behrooz Johari
- Department of Medical Biotechnology
- School of Medicine
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Hamed Rezaeejam
- Department of Radiology
- School of Paramedical and Health
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Hamidreza Kheiri Manjili
- Zanjan Pharmaceutical Nanotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| | - Soodabeh Davaran
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center
- Zanjan University of Medical Sciences
- Zanjan
- Iran
- Department of pharmaceutical biomaterials
| |
Collapse
|
6
|
Boateng F, Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int J Mol Sci 2019; 21:ijms21010273. [PMID: 31906108 PMCID: PMC6981554 DOI: 10.3390/ijms21010273] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor without or with limited systemic side effects on healthy tissues/organs remains a challenge that many investigators continue to explore. With current systemic intravenous delivery of a drug, even targeted nanoparticles with great prospect of reaching targeted distant tumor sites, only a portion of the administered NPs/drug dosage can reach the tumor, despite the enhanced permeability and retention (EPR) effect. The rest of the targeted NPs/drug remain in systemic circulation, resulting in systemic toxicity, which can decrease the general health of patients. However, the dose from ionizing radiation is generally delivered across normal tissues to the tumor cells (especially external beam radiotherapy), which limits dose escalation, making radiotherapy (RT) somewhat unsafe for some diseased sites despite the emerging development in RT equipment and technologies. Since radiation cannot discriminate healthy tissue from diseased tissue, the radiation doses delivered across healthy tissues (even with nanoparticles delivered via systemic administration) are likely to increase injury to normal tissues by accelerating DNA damage, thereby creating free radicals that can result in secondary tumors. As a result, other delivery routes, such as inhalation of nanoparticles (for lung cancers), localized delivery via intratumoral injection, and implants loaded with nanoparticles for local radiosensitization, have been studied. Herein, we review the current NP delivery techniques; precise systemic delivery (injection/infusion and inhalation), and localized delivery (intratumoral injection and local implants) of NBRs/NPs. The current challenges, opportunities, and future prospects for delivery of nanoparticle-based radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Francis Boateng
- TIDTAC LLC, Orlando, FL 32828, USA
- Correspondence: ; Tel.: +1-7745264723
| | - Wilfred Ngwa
- TIDTAC LLC, Orlando, FL 32828, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell, MA 01854, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Xia J, Tsai AC, Cheng W, Yuan X, Ma T, Guan J. Development of a microdevice-based human mesenchymal stem cell-mediated drug delivery system. Biomater Sci 2019; 7:2348-2357. [PMID: 30916669 DOI: 10.1039/c8bm01634h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-mediated drug delivery systems utilize living cells as vehicles to achieve controlled delivery of drugs. One of the systems features integrating cells with disk-shaped microparticles termed microdevices into cell-microdevice complexes that possess some unique advantages over their counterparts. Human mesenchymal stem cells (hMSCs) have been extensively studied as therapeutic cells and used as carrier cells for drug-loaded nanoparticles or other functional nanoparticles. This article presents the development of a microdevice-based hMSC-mediated drug delivery system for the first time. This study revealed that the microdevices could be attached to the hMSCs in a controlled and versatile manner; the produced hMSC-microdevice complexes were stable over cultivation and trypsinization, and the microdevice attachment did not affect the viability and proliferation of the hMSCs. Moreover, cultured microdevice-bound hMSCs retained their abilities to migrate on a flat surface, form a spheroid, and actively dissociate from the spheroid. These results indicate that this microdevice-based hMSC-mediated system promises to be further developed into a clinically viable drug delivery system.
Collapse
Affiliation(s)
- Junfei Xia
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Tang T, Weng T, Jia H, Luo S, Xu Y, Li L, Zhang P. Harnessing the layer-by-layer assembly technique to design biomaterials vaccines for immune modulation in translational applications. Biomater Sci 2019; 7:715-732. [PMID: 30762040 DOI: 10.1039/c8bm01219a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence of challenging diseases such as cancers, HIV and Zika requires developing new vaccines that can generate tunable and robust immune responses against the diseases. Biomaterials-based techniques have been broadly explored for designing vaccines that can produce controllable and potent immunity. Among the existing biomaterials-based strategies, the layer-by-layer (LbL) assembly technique is remarkably attractive in vaccine design due to its unique features such as programmed and versatile cargo loading, cargo protection, co-delivery, juxtaposing of immune signals, etc. In this work, we reviewed the existing LbL-based vaccine design techniques for translational applications. Specifically, we discussed nanovaccines constructed by coating polyelectrolyte multilayers (PEMs) on nanoparticles, microcapsule vaccines assembled from PEMs, polyplex/complex vaccines condensed from charged materials and microneedle vaccines deposited with PEMs, highlighting the employment of these techniques to promote immunity against diseases ranging from cancers to infectious and autoimmune diseases (i.e., HIV, influenza, multiple sclerosis, etc.). Additionally, the review specifically emphasized using LbL-based vaccine technologies for tuning the cellular and molecular pathways, demonstrating the unique advantages presented by these vaccination strategies. These studies showed the versatility and potency of using LbL-based techniques for designing the next generation of biomaterials vaccines for translational purposes.
Collapse
Affiliation(s)
- Tan Tang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Jiang YW, Gao G, Jia HR, Zhang X, Zhao J, Ma N, Liu JB, Liu P, Wu FG. Copper Oxide Nanoparticles Induce Enhanced Radiosensitizing Effect via Destructive Autophagy. ACS Biomater Sci Eng 2019; 5:1569-1579. [PMID: 33405630 DOI: 10.1021/acsbiomaterials.8b01181] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Emerging nanotechnologies for radiotherapy are attracting increasing interest from researchers in recent years. To improve the radiotherapeutic performance, developing nanoparticles that can efficiently generate toxic reactive oxygen species (ROS) under X-ray irradiation are highly desirable. Here, we investigate the potential of copper oxide nanoparticles (CuO NPs) as nanoradiosensitizers. Increased cancer cell inhibition is observed in colony formation assay and real-time cell analysis after the combined treatment with CuO NPs and X-ray irradiation, whereas the CuO NPs alone do not have any negative influence on cell viability, indicating the radiosensitization effect of CuO NPs. Importantly, the significantly increased ROS level in cells contributes to the enhanced damage to cancer cells under the combined treatment. Besides, the cell cycle is regulated to the X-ray-sensitive phase (G2/M phase) by CuO NPs, which may also account for the inhibited proliferation of cancer cells. Furthermore, results from Western blot analysis and colony formation assay reveal that the increased cell death may be mainly attributed to the excessive autophagy induced by both CuO NPs and X-ray irradiation. Moreover, in vivo experiments verify the radiosensitization of CuO NPs and their favorable biosafety. The current study suggests that CuO NPs can be utilized as nanoradiosensitizers for increasing the efficiency of cancer radiotherapy.
Collapse
|
10
|
Zhang S, Gupta S, Fitzgerald TJ, Bogdanov AA. Dual radiosensitization and anti-STAT3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells. Nanotheranostics 2018; 2:1-11. [PMID: 29291159 PMCID: PMC5743834 DOI: 10.7150/ntno.22335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Constitutively activated signal transducer and activator of transcription 3 (STAT3) factor is an important therapeutic target in head and neck cancer (HNC). Despite early promising results, a reliable systemic delivery system for STAT3- targeted oligonucleotide (ODN) drugs is still needed for future clinical translation of anti-STAT3 therapies. We engineered and tested a novel ODN duplex/gold nanoparticle (AuNP)-based system carrying a therapeutic STAT3 decoy (STAT3d) payload. This strategy is two-pronged because of the additive STAT3 antagonism and radiosensitizing properties of AuNP. The specificity to head and neck cancer cell surface was imparted by using a nucleolin aptamer (NUAP) that was linked to AuNP for taking the advantage of an aberrant presentation of a nuclear protein nucleolin on the cell surface. STAT3d and nucleolin aptamer constructs were independently linked to AuNPs via Au-S bonds. The synthesized AuNP constructs (AuNP-NUAP-STAT3d) exhibited internalization in cells that was quantified by using radiolabeled STAT3d. AuNP-NUAP-STAT3d showed radiosensitizing effect in human HNC FaDu cell culture experiments that resulted in an increase of cell DNA damage as determined by measuring γ-H2AX phosphorylation levels by flow cytometry. The radiosensitization study also demonstrated that AuNP-NUAP-STAT3d as well as STAT3d alone resulted in the efficient inhibition of A431 cell proliferation. While FaDu cells did not show instant proliferation inhibition after incubating with AuNP-NUAP-STAT3d, the cell DNA damage in these cells showed nearly a 50% increase in AuNP-NUAP-STAT3d group after treating with radiation. Compared with anti-EGFR humanized antibody (Cetuximab), AuNP-NUAP-STAT3d system had an overall stronger radiosensitization effect in both A431 and FaDu cells.
Collapse
Affiliation(s)
- Surong Zhang
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| | - Suresh Gupta
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester MA, USA
| | - Alexei A Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| |
Collapse
|
11
|
Ma N, Liu P, He N, Gu N, Wu FG, Chen Z. Action of Gold Nanospikes-Based Nanoradiosensitizers: Cellular Internalization, Radiotherapy, and Autophagy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31526-31542. [PMID: 28816044 DOI: 10.1021/acsami.7b09599] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major challenge to achieve effective X-ray radiation therapy is to use a relatively low and safe radiation dose. Various radiosensitizers, which can significantly enhance the radiotherapeutic performance, have been developed. Gold-based nanomaterials, as a new type of nanoparticle-based radiosensitizers, have been extensively used in researches involving cancer radiotherapy. However, the cancer therapeutic effect using the gold nanoparticle-based radiotherapy is usually not significant because of the low cellular uptake efficiency and the autophagy-inducing ability of these gold nanomaterials. Herein, using gold nanospikes (GNSs) as an example, we prepared a series of thiol-poly(ethylene glycol)-modified GNSs terminated with methoxyl (GNSs), amine (NH2-GNSs), folic acid (FA) (FA-GNSs), and the cell-penetrating peptide TAT (TAT-GNSs), and evaluated their effects on X-ray radiotherapy. For the in vitro study, it was found that the ionizing radiation effects of these GNSs were well correlated with their cellular uptake amounts, with the same order of GNSs < NH2-GNSs < FA-GNSs < TAT-GNSs. The sensitization enhancement ratio (SER), which is commonly used to evaluate how effectively radiosensitizers decrease cell proliferation, reaches 2.30 for TAT-GNSs. The extremely high SER value for TAT-GNSs indicates the superior radiosensitization effect of this nanomaterial. The radiation enhancement mechanisms of these GNSs involved the increased reactive oxygen species (ROS), mitochondrial depolarization, and cell cycle redistribution. Western blotting assays confirmed that the surface-modified GNSs could induce the up-regulation of autophagy-related protein (LC3-II) and apoptosis-related protein (active caspase-3) in cancer cells. By monitoring the degradation of the autophagy substrate p62 protein, GNSs caused impairment of autolysosome degradation capacity and autophagosome accumulation. Our data demonstrated that autophagy played a protective role against caner radiotherapy, and the inhibition of protective autophagy with inhibitors would result in the increase of cell apoptosis. Besides the above in vitro experiments, the in vivo tumor growth study also indicated that X-ray + TAT-GNSs treatment had the best tumor growth inhibitory effect, which confirmed the highest radiation sensitizing effect of TAT-GNSs. This work furthered our understanding on the interaction mechanism between gold nanomaterials and cancer cells and should be able to promote the development of nanoradiosensitizers for clinical applications.
Collapse
Affiliation(s)
- Ningning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Peidang Liu
- Institute of Neurobiology, School of Medicine, Southeast University , Nanjing 210096, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Ma N, Wu FG, Zhang X, Jiang YW, Jia HR, Wang HY, Li YH, Liu P, Gu N, Chen Z. Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13037-13048. [PMID: 28338323 DOI: 10.1021/acsami.7b01112] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The shape effect of gold (Au) nanomaterials on the efficiency of cancer radiotherapy has not been fully elucidated. To address this issue, Au nanomaterials with different shapes but similar average size (∼50 nm) including spherical gold nanoparticles (GNPs), gold nanospikes (GNSs), and gold nanorods (GNRs) were synthesized and functionalized with poly(ethylene glycol) (PEG) molecules. Although all of these Au nanostructures were coated with the same PEG molecules, their cellular uptake behavior differed significantly. The GNPs showed the highest cellular responses as compared to the GNSs and the GNRs (based on the same gold mass) after incubation with KB cancer cells for 24 h. The cellular uptake in cells increased in the order of GNPs > GNSs > GNRs. Our comparative studies indicated that all of these PEGylated Au nanostructures could induce enhanced cancer cell-killing rates more or less upon X-ray irradiation. The sensitization enhancement ratios (SERs) calculated by a multitarget single-hit model were 1.62, 1.37, and 1.21 corresponding to the treatments of GNPs, GNSs, and GNRs, respectively, demonstrating that the GNPs showed a higher anticancer efficiency than both GNSs and GNRs upon X-ray irradiation. Almost the same values were obtained by dividing the SERs of the three types of Au nanomaterials by their corresponding cellular uptake amounts, indicating that the higher SER of GNPs was due to their much higher cellular uptake efficiency. The above results indicated that the radiation enhancement effects were determined by the amount of the internalized gold atoms. Therefore, to achieve a strong radiosensitization effect in cancer radiotherapy, it is necessary to use Au-based nanomaterials with a high cellular internalization. Further studies on the radiosensitization mechanisms demonstrated that ROS generation and cell cycle redistribution induced by Au nanostructures played essential roles in enhancing radiosensitization. Taken together, our results indicated that the shape of Au-based nanomaterials had a significant influence on cancer radiotherapy. The present work may provide important guidance for the design and use of Au nanostructures in cancer radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Enhanced Radiation Therapy of Gold Nanoparticles in Liver Cancer. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Ma N, Jiang YW, Zhang X, Wu H, Myers JN, Liu P, Jin H, Gu N, He N, Wu FG, Chen Z. Enhanced Radiosensitization of Gold Nanospikes via Hyperthermia in Combined Cancer Radiation and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28480-28494. [PMID: 27689441 DOI: 10.1021/acsami.6b10132] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metallic nanostructures as excellent candidates for nanosensitizers have shown enormous potentials in cancer radiotherapy and photothermal therapy. Clinically, a relatively low and safe radiation dose is highly desired to avoid damage to normal tissues. Therefore, the synergistic effect of the low-dosed X-ray radiation and other therapeutic approaches (or so-called "combined therapeutic strategy") is needed. Herein, we have synthesized hollow and spike-like gold nanostructures by a facile galvanic replacement reaction. Such gold nanospikes (GNSs) with low cytotoxicity exhibited high photothermal conversion efficiency (η = 50.3%) and had excellent photostability under cyclic near-infrared (NIR) laser irradiations. We have demonstrated that these GNSs can be successfully used for in vitro and in vivo X-ray radiation therapy and NIR photothermal therapy. For the in vitro study, colony formation assay clearly demonstrated that GNS-mediated photothermal therapy and X-ray radiotherapy reduced the cell survival fraction to 89% and 51%, respectively. In contrast, the cell survival fraction of the combined radio- and photothermal treatment decreased to 33%. The synergistic cancer treatment performance was attributable to the effect of hyperthermia, which efficiently enhanced the radiosensitizing effect of hypoxic cancer cells that were resistant to ionizing radiation. The sensitization enhancement ratio (SER) of GNSs alone was calculated to be about 1.38, which increased to 1.63 when the GNS treatment was combined with the NIR irradiation, confirming that GNSs are effective radiation sensitizers to enhance X-ray radiation effect through hyperpyrexia. In vivo tumor growth study indicated that the tumor growth inhibition (TGI) in the synergistically treated group reached 92.2%, which was much higher than that of the group treated with the GNS-enhanced X-ray radiation (TGI = 29.8%) or the group treated with the GNS-mediated photothermal therapy (TGI = 70.5%). This research provides a new method to employ GNSs as multifunctional nanosensitizers for synergistic NIR photothermal and X-ray radiation therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Ningning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Hao Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - John N Myers
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peidang Liu
- Institute of Neurobiology, School of Medicine, Southeast University , Nanjing 210096, P. R. China
| | - Haizhen Jin
- Institute of Neurobiology, School of Medicine, Southeast University , Nanjing 210096, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Liu P, Jin H, Guo Z, Ma J, Zhao J, Li D, Wu H, Gu N. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomedicine 2016; 11:5003-5014. [PMID: 27757033 PMCID: PMC5055115 DOI: 10.2147/ijn.s115473] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy performs an important function in the treatment of cancer, but resistance of tumor cells to radiation still remains a serious concern. More research on more effective radiosensitizers is urgently needed to overcome such resistance and thereby improve the treatment outcome. The goal of this study was to evaluate and compare the radiosensitizing efficacies of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) on glioma at clinically relevant megavoltage energies. Both AuNPs and AgNPs potentiated the in vitro and in vivo antiglioma effects of radiation. AgNPs showed more powerful radiosensitizing ability than AuNPs at the same mass and molar concentrations, leading to a higher rate of apoptotic cell death. Furthermore, the combination of AgNPs with radiation significantly increased the levels of autophagy as compared with AuNPs plus radiation. These findings suggest the potential application of AgNPs as a highly effective nano-radiosensitizer for the treatment of glioma.
Collapse
Affiliation(s)
- Peidang Liu
- School of Medicine; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University
| | | | - Zhirui Guo
- The Second Affiliated Hospital of Nanjing Medical University
| | - Jun Ma
- Traditional Chinese Medicine Hospital of Jiangsu Province, Nanjing, People's Republic of China
| | | | | | - Hao Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University
| |
Collapse
|
16
|
Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M, Yang K, Lu G, Jiang L, Liu Z. Nanoscale metal−organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016; 97:1-9. [DOI: 10.1016/j.biomaterials.2016.04.034] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
|
17
|
Sasidharan S, Bahadur D, Srivastava R. Protein-Poly(amino acid) Nanocore-Shell Mediated Synthesis of Branched Gold Nanostructures for Computed Tomographic Imaging and Photothermal Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15889-903. [PMID: 27243100 DOI: 10.1021/acsami.6b03428] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Anisotropic noble metal nanoparticles especially branched gold nanoparticles with a large absorption cross-section and high molar extinction coefficient have promising applications in biomedical field. However, sophisticated and cumbersome methodologies of synthesis along with toxic precursors pose serious concern for its use. Herein, we report the synthesis of branched gold nanostructures from protein (albumin) nanoparticles by a simple reduction method. Albumin nanoparticles were synthesized by a modified desolvation technique with poly-l-arginine (cationic poly amino acid) substituting the conventional toxic cross-linker, glutaraldehyde. In silico molecular docking was carried out to study the interaction of poly-l-arginine with albumin which revealed its binding to Pocket 1B of the A-chain of albumin. The poly-l-arginine-albumin core-shell nanoparticles of ∼100 nm in size served as a base for attachment of gold ions and its reduction to form 140 nm sized branched gold nanostructures conjugated with glutathione. These gold nanostructures exhibited near-infrared absorption λmax at 800 nm with extreme compatibility toward non cancerous (NIH 3T3), oral epithelial carcinoma (KB) cell lines, and human blood (red blood cells, platelets, and coagulation mechanisms) even up to a high concentration of 250 μg/mL. These structures demonstrated superior computed tomographic (CT) contrast ability and marked photothermal cytotoxicity on KB cells. This study reports for the first time a method to develop blood and cell compatible branched gold nanostructures from protein nanoparticles as a dual CT diagnostic and photothermal therapeutic agent.
Collapse
Affiliation(s)
- Sisini Sasidharan
- Department of Biosciences and Bioengineering, IIT Bombay , Powai, Mumbai, 400076, India
| | - Dhirendra Bahadur
- Department of Metallurgical Engineering and Materials Science, IIT Bombay , Powai, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay , Powai, Mumbai, 400076, India
| |
Collapse
|